Les commandes de ce T.P.

• linalg[dotprod]

• copy

Exercice 1. (Algorithme de Gram-Schmidt, copy)

- **1.a)** Écrire une procédure ps1 qui prend en argument deux fonctions P et Q et qui renvoie la quantité $\int_0^1 P(t)Q(t) dt$.
 - **b)** Calculer la norme des fonctions polynomiales $x \mapsto 1$ puis $x \mapsto x$ puis leur produit scalaire.
- 2. Écrire une procédure orthonormalisation_GS(L,ps) qui prend comme arguments une liste de vecteurs L, un produit scalaire ps et renvoie la famille orthonormalisée selon le procédé de Gram-Schmidt.
- **3.** Orthonormaliser la famille $(1, X, X^2)$ dans $\mathbb{R}_2[X]$ muni du produit scalaire $\int_{-1}^1 P(t)Q(t) dt$. Ces polynômes sont appelés polynômes de Legendre.

Exercice 2. (Géométrie - Centrale)

- 1. Rappeler et justifier la définition de la perpendiculaire commune à deux droites de \mathbb{R}^3 .
- **2.** On considère les plans P_1 et P_2 de \mathbb{R}^5 dont les équations cartésiennes sont respectivement

$$\begin{cases} x_2 + 2x_3 = 8 \\ -2x_1 + x_2 + x_4 = -2 \\ -6x_1 + 3x_2 + 2x_5 = -2 \end{cases} \begin{cases} -3x_1 - 2x_2 + x_3 = 13 \\ -5x_1 - 6x_2 + 2x_4 = 29 \\ -x_1 + 2x_5 = 7 \end{cases}$$

Ces deux plans possèdent-ils une perpendiculaire commune?

Exercice 3. (Matrices de Gram - Centrale) Soit E un espace euclidien muni d'un produit scalaire $\langle \cdot, \cdot \rangle$ et (e_1, \ldots, e_n) une base de E.

- **1.** Soient x_1, \ldots, x_n des vecteurs de E. Montrer que la matrice $(\langle x_i, x_j \rangle)_{i,j \in [\![1,n]\!]}$ est inversible si et seulement si la famille (x_1, \ldots, x_n) est libre.
- **2.** Montrer qu'il existe une unique famille (y_1, \ldots, y_n) de E telle que pour tous $i, j \in [1, n], \langle e_i, y_j \rangle = \delta_{i,j}$.
- **3.** Déterminer dans \mathbb{R}^4 , muni du produit scalaire canonique, une telle famille (y_1, y_2, y_3, y_4) si $e_1 = (1, 1, 3, 0), e_2 = (-1, 4, 2, 1), e_3 = (2, -1, 7, -3)$ et $e_4 = (1, 0, 1, 0)$.
- **4.** Soit $P \subset E$ non vide. Montrer que P est finie si et seulement si $\{\langle x,y\rangle,\,x,\,y\in P\}$ est fini.