STANISLAS DM n° 15

Devoir à la Maison Un résultat Très classique à rendre le lundi 19 mars 2012

MPSI 1 ind.: 2h00

On cherche dans cet exercice à calculer $\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k^2}$. Pour tout entier naturel n, on pose

$$Q_n = \frac{1}{2i} \left[(X+i)^{2n+1} - (X-i)^{2n+1} \right].$$

Dans tout ce problème, n désigne un entier naturel non nul.

- **1.a)** Montrer que $Q_n \in \mathbb{R}[X]$.
 - **b)** Déterminer le degré, le coefficient dominant et la parité de Q_n .
- **2.a**) Déterminer les racines de Q_n .
 - **b)** En déduire que

$$Q_n = (2n+1) \prod_{k=1}^n \left(X^2 - \cot^2 \left(\frac{k\pi}{2n+1} \right) \right).$$

3. Une somme de sinus.

- **a)** Montrer que $Q_n = \sum_{k=0}^n (-1)^k {2n+1 \choose 2k+1} X^{2n-2k}$.
- **b)** En déduire que $\sum_{k=1}^{n} \cot^2 \left(\frac{k\pi}{2n+1} \right) = \frac{n(2n-1)}{3}$. **c)** Montrer que $\sum_{k=1}^{n} \frac{1}{\sin^2 \left(\frac{k\pi}{2n+1} \right)} = \frac{2n(n+1)}{3}$.

4. Calcul de la limite.

- a) Montrer que pour tout $x \in]0, \frac{\pi}{2}[$, cotan $x < \frac{1}{x} < \frac{1}{\sin x}$.
- **b)** En déduire $\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{k^2}$.

5. Approximations.

- **a)** Montrer que $0 \le \frac{\pi^2}{6} \sum_{k=1}^n \frac{1}{k^2} \le \frac{\pi^2}{2(2n+1)}$.
- b) Écrire, en Python, une fonction approx(p) qui prend comme argument un entier naturel p et renvoie une valeur approchée de $\frac{\pi^2}{6}$ à 10^{-p} près.