MPSI 1 1h30

On se propose d'étudier les solutions des systèmes linéaires à 2 et 3 inconnues d'un point de vue géométrique. Nous allons voir comment résoudre ces systèmes à l'aide du calcul de déterminants, sans utiliser la méthode du pivot de Gauss.

Partie I : Deux équations, Deux inconnues

Soit $(\alpha, \beta, \gamma, \delta, a, b) \in \mathbb{R}^6$. On considère le système d'équations d'inconnues x et y

$$(\mathscr{S}) \left\{ \begin{array}{rcl} \alpha x + \beta y & = & a & (1) \\ \gamma x + \delta y & = & b & (2) \end{array} \right.$$

On considère le plan euclidien muni d'un repère $(O, \overrightarrow{i}, \overrightarrow{j})$. On note \overrightarrow{u} (resp. $\overrightarrow{v}, \overrightarrow{w}$) le vecteur de coordonnées cartésiennes (α, γ) (resp. $(\beta, \delta), (a, b)$).

 ${\bf 1.a}$) Donner une condition nécessaire et suffisante pour que les équations (1) et (2) soient des équations de droite.

b) Si (1) ou (2) ne sont pas des équations de droites, déterminer le nombre de solutions du système (\mathcal{S}) .

On suppose dans toute dans la suite que (1) et (2) définissent des droites.

2. Donner une condition nécessaire et suffisante pour que les droites d'équations respectives (1) et (2) aient un unique point d'intersection. On exprimera cette condition à l'aide du déterminant de \overrightarrow{u} et \overrightarrow{v} .

3. On suppose dans cette question que $\det(\overrightarrow{u}, \overrightarrow{v}) \neq 0$.

a) Écrire le système d'équations sous forme d'égalité entre vecteurs.

b) En utilisant les propriétés du déterminant, montrer que la solution du système est donnée par les formules dites de Cramer

$$x = \frac{\left| \begin{array}{cc} a & \beta \\ b & \delta \end{array} \right|}{\left| \begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right|}, y = \frac{\left| \begin{array}{cc} \alpha & a \\ \gamma & b \end{array} \right|}{\left| \begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right|}.$$

4. On suppose dans cette question que $\det(\overrightarrow{u}, \overrightarrow{v}) = 0$.

a) Montrer que si $\det(\overrightarrow{u}, \overrightarrow{w}) = \det(\overrightarrow{v}, \overrightarrow{w}) = 0$, le système possède une infinité de solutions.

b) Montrer que si $\det(\overrightarrow{u}, \overrightarrow{w}) \neq 0$ ou $\det(\overrightarrow{v}, \overrightarrow{w}) \neq 0$, le système n'a pas de solution.

Partie II: Trois équations, Trois inconnues

Soit $(a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, b_1, b_2, b_3) \in \mathbb{R}^9$. On considère le système d'équations

$$(\mathscr{S}) \begin{cases} a_{11}x + a_{12}y + a_{13}z &= b_1 & (1) \\ a_{21}x + a_{22}y + a_{23}z &= b_2 & (2) \\ a_{31}x + a_{32}y + a_{33}z &= b_3 & (3) \end{cases}$$

On notera
$$\Delta = \left| \begin{array}{cccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right|.$$

- **5.** On interprète le système d'équations (\mathscr{S}) comme trois équations de plan (dans des conditions à préciser) de vecteurs normaux $\overrightarrow{n_1}(a_{11}, a_{12}, a_{13}), \overrightarrow{n_2}(a_{21}, a_{22}, a_{23})$ et $\overrightarrow{n_3}(a_{31}, a_{32}, a_{33})$.
- a) Montrer que l'intersection de ces trois plans est réduit à un point si et seulement si $\det(\overrightarrow{n_1}, \overrightarrow{n_2}, \overrightarrow{n_3}) \neq 0$.
- **b)** Montrer que $\Delta = \det(\overrightarrow{n_1}, \overrightarrow{n_2}, \overrightarrow{n_3})$ puis que le système (\mathscr{S}) admet une unique solution si et seulement si $\Delta \neq 0$.
- c) Montrer, en s'inspirant de la méthode employée en dimension 2 pour obtenir les formules de Cramer, que lorsque $\Delta \neq 0$, la solution du système est unique et est donnée par les formules de Cramer en dimension 3 :

$$x = \frac{1}{\Delta} \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}, y = \frac{1}{\Delta} \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}, z = \frac{1}{\Delta} \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}.$$

6. Soient \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} trois vecteurs de l'espace. Montrer que ces vecteurs sont non coplanaires si et seulement si pour tout vecteur \overrightarrow{u} de l'espace, il existe un unique triplet de réels (x,y,z) tel que $\overrightarrow{u} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$.