Devoir à la Maison Le Théorème de d'Alembert-Gauss Vacances d'hiver

MPSI 1 ind.: 2h00

On propose de démontrer le théorème de d'Alembert-Gauss : tout polynôme non constant de $\mathbb{C}[X]$ possède au moins une racine dans \mathbb{C} .

Soit P un polynôme de $\mathbb{C}[X]$ de degré p > 0. Notons $\mathscr{P} = \{|P(z)| \; ; \; z \in \mathbb{C}\}.$

- 1. Montrer que \mathscr{P} admet une borne inférieure notée α .
- **2.** Soit r > 0. Montrer que pour tout nombre complexe z de module r,

$$|P(z)| \ge |a_p|r^p - \sum_{k=0}^{p-1} |a_k|r^k.$$

- 3. En déduire que $\lim_{|z|\to+\infty}|P(z)|=+\infty$.
- **4.** Montrer qu'il existe une suite $(z_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$ et $z_0\in\mathbb{C}$ tels que $\lim_{n\to+\infty}|P(z_n)|=|P(z_0)|=\alpha$.
- **5.** On suppose que $\alpha \neq 0$ et on pose $Q = \frac{P(X+z_0)}{P(z_0)}$
 - **a)** Montrer que $\inf_{z \in \mathbb{C}} |Q(z)| = |Q(0)| = 1$.
 - **b)** Montrer qu'il existe $q \in [1, p]$ et $b_q \neq 0$ tels que $Q = \sum_{k=q+1}^p b_k X^k b_q X^q + 1$.
- c) On note (sous forme trigonométrique) $b_q = \rho e^{-i\theta}$ et $z = re^{i\theta/q}$. Montrer qu'il existe $r_0 > 0$ tel que pour tout $r \le r_0$,

$$|Q(z)| - 1 \le -\rho r^q + \sum_{k=q+1}^p |b_k| r^k.$$

- **d)** En déduire que $\alpha = 0$.
- **6.** Conclure.