2h

La fonction cotangente est définie par le rapport cotan = $\frac{\cos}{\sin}$.

Théorème 1 (Provisoirement admis).

Soient n est un entier naturel, $(a_0, \ldots, a_n) \in \mathbb{C}^{n+1}$ tels que $a_n \neq 0$ et $P: x \mapsto a_n x^n + \sum_{k=0}^{n-1} a_k x^k$ un polynôme de degré n. Le polynôme P possède au plus n racines et si ζ_1, \ldots, ζ_n sont les racines du polynôme P, alors $P(x) = a_n \prod_{k=1}^{n} (x - \zeta_k)$.

1. Étude de fonction.

- a) Déterminer le domaine de définition puis la parité de la fonction cotan.
- b) Déterminer le domaine de dérivabilité puis la valeur de la dérivée de la fonction cotan.
- c) En déduire le tableau de variations de la fonction cotan sur $]-\pi,\pi[$, puis sa représentation graphique.

2. Quelques formules trigonométriques. Soient x, y deux réels.

- a) Exprimer $\cot a(x+y)$ en fonction de $\cot ax$ et $\cot ay$, lorsque ces quantités sont définies.
- b) Exprimer $\cot x 2\cot x$ en fonction de $\tan x$, lorsque ces quantités sont définies.

3. Bijection réciproque.

- a) Justifier l'existence d'une bijection réciproque de la fonction cotangente à valeurs dans $]0,\pi[$. Préciser son domaine de définition et sa monotonie. Celle-ci sera notée acotan.
 - b) Préciser le domaine de définition et la valeur de la dérivée de la fonction acotan.
 - c) Pour tout $x \in]-\pi, \pi[\setminus \{0\}, déterminer les valeurs cotan(acotan(x)) et acotan(cotan(x)).$
 - **d)** Pour tout $x \in \mathbb{R}$, calculer $\sin \arctan(x)$.

4. Calcul d'une somme.

Soit m un entier naturel et x un réel.

a) Montrer que

$$\sin\{(2m+1)x\} = (\sin x)^{2m+1} \sum_{k=0}^{m} {2m+1 \choose 2k+1} (-1)^k (\cot x)^{2m-2k}.$$

b) On considère le polynôme : $P_m = \sum_{k=0}^m {2m+1 \choose 2k+1} (-1)^k X^{m-k}$. Déterminer le terme de plus haut degré de P_m puis démontrer que l'ensemble des racines de P_m

est $\left\{ \cot^2 \frac{k\pi}{2m+1}, k \in [1, m] \right\}$.

c) En déduire que

$$\sum_{k=1}^{m} \cot^2 \frac{k\pi}{2m+1} = \frac{2m(2m-1)}{6}.$$

- **d**) En définissant la fonction cosécante par $\csc = \frac{1}{\sin}$, en déduire que $\sum_{l=1}^{m} \csc^2 \frac{k\pi}{2m+1} = \frac{m(2m+2)}{3}$.
- e) Montrer que pour tout $y \in]0, \frac{\pi}{2}[$, on a $\cot^2 y < \frac{1}{y^2} < \csc^2 y$.
- **f)** En déduire un encadrement de $\sum_{k=1}^{\infty} \frac{1}{k^2}$.
- **g**) Conclure en montrant que la suite $\left(\sum_{k=1}^{m} \frac{1}{k^2}\right)_{m \in \mathbb{N}^*}$ converge et préciser sa limite.