. . .

L'usage des calculatrices est interdit.

Un grand soin devra être apporté à la présentation et à la rédaction.

Si vous constatez ce qui vous semble être une erreur d'énoncé, signalez-le et poursuivez votre composition en expliquant les raisons des initiatives que vous serez amenés à prendre.

L'exercice et les deux problèmes sont indépendants.

Exercice 1. (Deux petits calculs)

- 1. Déterminer le développement limité à l'ordre 4 en 0 de $\sqrt{1+\cos x}$.
- **2.** Déterminer le reste de la division euclidienne de 3^{2014} par 7.

Problème. (Résolution d'une équation différentielle) Dans tout le problème, on note f la fonction définie sur \mathbb{R}_+ par

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{si } x > 0\\ 1 & \text{si } x = 0. \end{cases}$$

Dans tout le problème, n désigne un entier naturel et $I_n = [n\pi, (n+1)\pi]$.

Partie I : Allure du graphe de f

- **1.** Montrer que f est une fonction de classe \mathscr{C}^1 sur \mathbb{R}_+ .
- **2.a)** Montrer que, pour tout entier naturel non nul, l'équation $x \cos x = \sin x$ possède une unique solution dans l'intervalle I_n . Cette solution sera notée x_n .
 - **b)** Déterminer un équivalent de x_n lorsque n tend vers $+\infty$.
- **3.** On suppose dans cette question que n est non nul. Déterminer les variations de f sur l'intervalle I_0 , puis sur les intervalles I_{2n-1} et I_{2n} .
- **4.** Donner l'allure du graphe de f.

Partie II: Isomorphisme

On considère l'application Φ de $\mathbb{R}[X]$ dans lui même définie par

$$\forall P \in \mathbb{R}[X], \Phi(P) = P + P''.$$

5. Montrer que Φ est un endormorphisme du groupe $(\mathbb{R}[X],+)$ et que

$$\forall (\lambda, P) \in \mathbb{R} \times \mathbb{R}[X], \ \Phi(\lambda P) = \lambda \Phi(P).$$

- **6.** Montrer que Φ est injectif.
- **7.a)** Montrer que tout polynôme constant admet un antécédent par Φ .
- **b)** Soit P un polynôme de degré n+1. Montrer qu'il existe un polynôme Q tel que $P-\Phi(Q)$ appartienne à $\mathbb{R}_n[X]$.
 - c) En déduire que Φ est un isomorphisme de $\mathbb{R}[X]$.

Partie III: La fonction sinus et les polynômes

- **8.** Exprimer $\sin^{(n+2)}$ en fonction de $\sin^{(n)}$.
- 9. Soient U et V des polynômes de $\mathbb{R}[X]$ tels que

$$\forall x \in \mathbb{R}, U(x)\sin x + V(x)\cos x = 0.$$

Montrer que U et V sont nuls.

Partie IV: Une suite de polynômes

On note g la restriction de f à $]0, +\infty[$.

10 . a) Montrer qu'il existe deux suites de polynômes $(P_n)_{n\in\mathbb{N}}$ et $(Q_n)_{n\in\mathbb{N}}$ telles que

$$\forall x \in \mathbb{R}_{+}^{\star}, g^{(n)}(x) = \frac{P_n(x)\sin^{(n)}(x) + Q_n(x)\sin^{(n+1)}(x)}{x^{n+1}}.$$

- **b)** Montrer que ces deux suites sont uniques.
- c) Déterminer les expressions de P_{n+1} et Q_{n+1} en fonction de P_n et Q_n .
- **d)** Déterminer P_i et Q_i pour tout $i \in \{0, 1, 2\}$.
- **11.** Déterminer la parité, le degré et le terme de plus haut degré de P_n et de Q_n .
- **12.a)** En écrivant que, pour tout x > 0, $xg(x) = \sin x$, donner une expression de $\sin^{(n+1)}$ en fonction des dérivées de g.
 - **b)** En déduire d'autres relations reliant P_n , Q_n , P_{n+1} et Q_{n+1} .
- 13.a) Montrer que $P'_n = Q_n$.
 - **b)** Montrer que $P_n + P_n'' = X^n$.
- **14.** Montrer que P_n est l'unique solution de l'équation $\Phi(Q) = X^n$.
- **15.** On note $P_n = \sum_{k=0}^n a_k X^k$. À l'aide de la relation $\Phi(P_n) = X^n$, déterminer les valeurs des coefficients de P.

L'expression fera intervenir des factorielles et / ou des puissances, mais pas de signe \prod .

16. Déterminer les solutions réelles de l'équation différentielle $y'' + y = x^n$.

Problème. (Autour de la somme des diviseurs d'un entier naturel) Les deux parties de ce problème sont indépendantes.

Pour tout entier naturel non nul n, on note $\mathcal{D}(n)$ l'ensemble des entiers naturels diviseurs de n et $\sigma(n)$ la somme de ses diviseurs, i.e.

$$\sigma(n) = \sum_{k \in \mathscr{D}(n)} k = \sum_{k|n} k.$$

Dans toute la suite, n désigne un entier naturel supérieur ou égal à 2.

Partie I: Une majoration.

- **1.** Montrer que $\sigma(n) \leqslant \sum_{k=1}^{n} \frac{n}{k}$.
- **2.** En déduire que $\sigma(n) \leq n(1 + \ln n)$.

Partie II: Une équation

Pour tout entier naturel q, on note $f(q) = \sup\{n \in \mathbb{N}^* : \sigma(n) \leq q\}$. Pour tout $k \in \mathbb{N}^*$, on note \mathscr{E}_k l'ensemble des solutions de l'équation q - f(q) = k.

3. Premières constatations.

- a) Déterminer f(1).
- **b)** Pour tout entier naturel p non nul, montrer que f(p) est bien défini.
- **4.** Montrer que pour tout entier naturel p premier, $p+1 \in \mathcal{E}_1$.

Soit $k \ge 2$. On souhaite montrer que \mathscr{E}_k est infini. On désigne par \mathscr{P}_+ l'ensemble des entiers naturels premiers. Pour tout $n \in \mathbb{N}$, on pose $p_n = \max\{p \in \mathscr{P}_+ : p \le n! - (k+1)\}$.

- **5.** Montrer qu'il existe un rang n_0 à partir duquel p_n est bien défini.
- **6.** Déterminer la limite de la suite $(p_n)_{n \geqslant n_0}$.
- **7.** Soit $m \in [1, k-1]$ et n > k.
 - a) Si $p_n + m \le n! (k+1)$, montrer que $p_n + m$ n'est pas premier.
- **b)** Si $p_n + m \ge n! k$, montrer qu'il existe $i \in [2, k]$ tel que $p_n + m = n! i$. En déduire que $p_n + m$ n'est pas premier.
- **8.** Déterminer $f(p_n + k)$.
- 9. Conclure.