Stanislas D.M. 16

Devoir à la Maison Les entiers de Gauss à rendre le lundi 02 février 2015

 $\begin{array}{c} \mathbf{MPSI} \ 1 \\ 2 \mathrm{h} \end{array}$

On note i le nombre complexe tel que $i^2 = -1$ et

$$\mathbb{Z}[i] = \left\{ a + ib, (a, b) \in \mathbb{Z}^2 \right\}.$$

Pour tout $z = a + ib \in \mathbb{Z}[i]$, on pose $N(a + ib) = a^2 + b^2$.

- **1.** Montrer que $(\mathbb{Z}[i], +, \times)$ est un anneau commutatif. On dira qu'un nombre $z \in \mathbb{Z}[i]$ est inversible s'il existe un nombre $y \in \mathbb{Z}[i]$ tel que zy = 1.
- **2.** Montrer que pour tous $x, y \in \mathbb{Z}[i]$, N(xy) = N(x)N(y). En déduire l'ensemble des élements symétrisables de $\mathbb{Z}[i]$.
- **3.** On dit qu'un élément $z \in \mathbb{Z}[i]$ est irréductible s'il n'est pas inversible et s'il ne peut pas se décomposer comme un produit d'éléments non inversibles de $\mathbb{Z}[i]$.
 - a) Soit $z \in \mathbb{Z}[i]$ tel que N(z) soit un nombre premier. Montrer que z est irréductible.
- **b)** Montrer qu'il existe $z \in \mathbb{Z}[i]$ tel que z soit irréductible et que N(z) soit un nombre entier composé.
- c) On dit que $x \in \mathbb{Z}[i]$ est un diviseur de $z \in \mathbb{Z}[i]$ s'il existe $y \in \mathbb{Z}[i]$ tel que $z = x \times y$. Déterminer l'ensemble des diviseurs de 1 + i.
- **4.** Dans cette question, nous définissons une division euclidienne sur $\mathbb{Z}[i]$. Soit $z \in \mathbb{Z}[i]$ et $y \in \mathbb{Z}[i] \setminus \{0\}$. On note $\frac{z}{y} = u + iv$, où $u, v \in \mathbb{Q}$.
 - **a)** Montrer qu'il existe $(u_0, v_0) \in \mathbb{Z}^2$ tels que $|u u_0| \leqslant \frac{1}{2}$ et $|v v_0| \leqslant \frac{1}{2}$.
 - **b)** Montrer que $z = (u_0 + iv_0)y + r$, où $r \in \mathbb{Z}[i]$ et N(r) < N(y).
 - c) Cette décomposition est-elle unique?
- 5. Autour de la décomposition d'un nombre comme somme de deux carrés.
- **a)** Soit p un nombre premier (dans \mathbb{Z}). Montrer que p est irréductible dans $\mathbb{Z}[i]$ si et seulement s'il n'existe pas de couple $(a,b) \in \mathbb{N}^2$ tels que $p = a^2 + b^2$.
- **b)** Soit $n \in \mathbb{N}$ et $\mathscr{C} = \{a^2 + b^2, (a, b) \in \mathbb{N}^2\}$. Montrer que $n \in \mathscr{C}$ si et seulement s'il existe $u \in \mathbb{Z}[i]$ tel que N(u) = n.
 - c) En déduire que si $n, n' \in \mathcal{C}$, alors $nn' \in \mathcal{C}$.