$\begin{array}{c} \mathbf{MPSI~1} \\ 07~\mathrm{mars}~2015 \end{array}$

. . .

L'usage des calculatrices est interdit.

Un grand soin devra être apporté à la présentation et à la rédaction.

Si vous constatez ce qui vous semble être une erreur d'énoncé, signalez-le et poursuivez votre composition en expliquant les raisons des initiatives que vous serez amenés à prendre.

- - -

Problème. Soit E un ensemble. On rappelle que E est de cardinal p s'il contient p éléments, i.e. s'il existe une bijection entre E et $[\![1,p]\!]$. On note alors |E|=p. Par convention, $|\emptyset|=0$. On rappelle également que si E et F sont deux ensembles finis, alors $|E\times F|=|E|\cdot |F|$. De plus, si A et B sont deux parties disjointes finies d'un ensemble E, alors $|A\cup B|=|A|+|B|$.

Dans tout le problème, n désigne un entier naturel non nul. L'ensemble des nombres entiers premiers sera noté \mathscr{P} .

La fonction d'Euler φ est définie pour tout entier naturel n non nul par

$$\varphi(n) = |\{k \in [1, n] ; n \wedge k = 1\}|.$$

On définit le sous-ensemble \mathbb{U}_n^{\star} des racines n-èmes de l'unité par

$$\mathbb{U}_n^\star = \left\{e^{\frac{2ik\pi}{n}}, \ k \in \llbracket 1, n-1 \rrbracket, \ k \wedge n = 1\right\}.$$

On note Φ_n le *n*-ème polynôme cyclotomique, i.e.

$$\Phi_n(X) = \prod_{\zeta \in \mathbb{U}_n^*} (X - \zeta).$$

Partie I: La fonction indicatrice d'Euler

- **1.** Déterminer $\varphi(1)$, $\varphi(3)$, $\varphi(6)$, $\varphi(8)$.
- 2. Soit p un nombre premier positif.
 - **a)** Calculer $\varphi(p)$ et $\varphi(p^2)$.
 - **b)** Soit $k \in \mathbb{N}^*$. Calculer $\varphi(p^k)$.
- **3.** Soit d un diviseur de n. On pose $E_d = \{k \in [1, n] ; n \land k = d\}$ et $F_d = \{k \in [1, \frac{n}{d}] ; \frac{n}{d} \land k = 1\}$.
 - a) Montrer que F_d et E_d sont en bijection
 - **b)** Montrer que $[1, n] = \bigcup_{d|n} E_d$.
 - **c)** En déduire que $\sum_{d|n} \varphi(d) = n$.
- **4.** Soit m un entier naturel premier avec n.
 - a) Montrer que $z \in \mathbb{U}_n^{\star}$ si et seulement si $z^n = 1$ et pour tout $k \in [1, n-1], z^k \neq 1$.
 - **b)** Montrer que pour tout $z \in \mathbb{U}_{mn}^{\star}$, il existe un unique couple $(a,b) \in U_m^{\star} \times U_n^{\star}$ tel que z = ab.
 - c) Montrer que

$$\varphi(mn) = \varphi(m)\varphi(n).$$

5. En déduire que

$$\varphi(n) = n \prod_{p \in \mathscr{P} \ ; \ p|n} \left(1 - \frac{1}{p}\right).$$

Stanislas A. Camanes

Partie II: Polynômes cyclotomiques

On note $\mathbb{Q}[X]$ (resp. $\mathbb{Z}[X]$) l'ensemble des polynômes à coefficients rationnels (resp. entiers).

- **6.** Déterminer, sous forme canonique, Φ_1 , Φ_2 , Φ_3 , Φ_4 et Φ_5 .
- 7. Déterminer le degré de Φ_n .
- **8.** Soit p un nombre premier positif. Déterminer Φ_p .
- **9.** Soit p un nombre premier positif ne divisant pas n. Montrer que

$$\Phi_{np}(X) = \frac{\Phi_n(X^p)}{\Phi_n(X)}.$$

- **10.** On suppose que n est impair. Montrer que $\Phi_{2n}(X) = \Phi_n(-X)$.
- 11. Montrer que

$$X^n - 1 = \prod_{d|n} \Phi_d(X).$$

- **12.** Soit $A \in \mathbb{Z}[X]$. Le contenu de A, noté c(A), est le plus grand diviseur commun des coefficients de A. On dit que A est primitif si c(A) = 1. Dans cette question, $(A, B) \in \mathbb{Z}[X]^2$.
 - a) Montrer que si A et B sont primitifs, alors AB est primitif.
 - **b)** Montrer que pour tout entier naturel m, $c(mA) = m \cdot c(A)$, puis que c(AB) = c(A)c(B).
- c) Soient P et Q deux polynômes unitaires de $\mathbb{Q}[X]$ tels que $PQ \in \mathbb{Z}[X]$. Montrer que P et Q appartiennent à $\mathbb{Z}[X]$.
- **d)** On suppose que $B \neq 0$ et unitaire. On note A = BQ + R la division euclidienne de A par B (dans $\mathbb{C}[X]$). Montrer que $(Q, R) \in \mathbb{Z}[X]^2$.
- **13.** En déduire que $\Phi_n \in \mathbb{Z}[X]$.

Partie III : Irréductibilité de certains polynômes cyclotomiques

Soit $P \in \mathbb{Q}[X]$. P est dit irréductible dans $\mathbb{Q}[X]$ si pour tout $(A, B) \in \mathbb{Q}[X]^2$,

$$(P = AB) \implies (A \text{ ou } B \text{ est associ\'e `a' } P).$$

Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{Z}[X]$. On admet le critère d'Eisenstein, i.e. si

- 1. p ne divise pas a_n ,
- 2. $\forall i \in [0, n-1], p \text{ divise } a_i$
- 3. p^2 ne divise pas a_0 ,

alors A est irréductible dans $\mathbb{Q}[X]$.

Dans cette partie, p désigne un nombre premier positif. On note

$$\omega = e^{\frac{2i\pi}{p}}$$
 et $\mathscr{Q} = \{ P \in \mathbb{Q}[X] ; P(\omega) = 0 \}.$

- **14.** On suppose que Φ_p est irréductible dans $\mathbb{Q}[X]$.
 - a) Montrer que 2 est non vide.
 - **b)** Montrer qu'il existe $Q_0 \in \mathcal{Q}$ unitaire et de degré minimal.
 - c) En déduire que $\mathcal{Q} = \{\Phi_p \cdot Q, Q \in \mathbb{Q}[X]\}.$
- **15.** Montrer que le polynôme $Q = \sum_{k=0}^{p-1} (X+1)^k$ est irréductible dans $\mathbb{Q}[X]$.
- **16.** En déduire que Φ_p est irréductible dans $\mathbb{Q}[X]$.