STANISLAS D.M. 19

Devoir à la Maison $\mathbb{Z}/n\mathbb{Z}$ à rendre le 07 mars 2016

 $\begin{array}{c} \mathbf{MPSI} \ 1 \\ 2 \mathrm{h} \end{array}$

Soit n un entier naturel supérieur ou égal à 2. On rappelle que la relation d'égalité modulo n est une relation d'équivalence. Pour tout $i \in [0, n-1]$, on note \bar{i} la classe d'équivalence de i. On note alors $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$.

On définit les lois internes + et \cdot par : pour $\bar{i}, \bar{j} \in \mathbb{Z}/n\mathbb{Z}, \bar{i}+\bar{j}=\bar{i}+\bar{j}$ et $\bar{i}\cdot\bar{j}=\bar{i}\cdot\bar{j}$. Plus précisément, si k est un représentant de \bar{i} et ℓ un représentant de \bar{j} , alors $\bar{i}+\bar{j}$ est la classe d'équivalence de $k+\ell$.

1. Premier contact avec $\mathbb{Z}/n\mathbb{Z}$.

- a) Montrer que les définitions de l'addition et de la multiplication ne dépendent pas des représentants choisis.
 - **b)** Montrer que $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ est un anneau commutatif.
 - c) Écrire les tables d'addition et de multiplication de $\mathbb{Z}/2\mathbb{Z}$ et $\mathbb{Z}/4\mathbb{Z}$.
 - d) Parmi les anneaux précédents, déterminer ceux qui sont intègres? ceux qui sont des corps?

2. Isomorphismes.

- **a)** Montrer que le groupe $(\mathbb{Z}/n\mathbb{Z}, +)$ est isomorphe au groupe (\mathbb{U}_n, \cdot) , où \mathbb{U}_n désigne l'ensemble des racines n-èmes de l'unité.
- **b)** On note \mathfrak{S}_3 l'ensemble des bijections de [1,3] dans [1,3]. Les groupes $(\mathbb{Z}/6\mathbb{Z},+)$ et (\mathfrak{S}_3,\circ) sont-ils isomorphes?

3. Éléments inversibles (pour la loi ·).

- a) Soit $x \in \mathbb{Z}$. Montrer que x et n sont premiers entre eux si et seulement si \overline{x} est inversible dans $\mathbb{Z}/n\mathbb{Z}$.
 - **b)** Déterminer, en justifiant votre réponse, l'inverse de $\overline{15}$ dans $\mathbb{Z}/98\mathbb{Z}$.
 - c) Soit p un nombre premier et $\alpha \in \mathbb{N}^*$. Déterminer le nombre d'éléments inversibles de $\mathbb{Z}/p^{\alpha}\mathbb{Z}$.
- **4. Diviseurs de** $\overline{0}$. On dit que \overline{x} est un diviseur de $\overline{0}$ si $\overline{x} \neq \overline{0}$ et il existe $\overline{y} \neq \overline{0}$ tel que $\overline{x} \cdot \overline{y} = \overline{0}$.
- a) Soit $x \in \mathbb{Z}^*$ tel que $x \not\equiv 0$ [n]. Montrer que \overline{x} est un diviseur de $\overline{0}$ dans $\mathbb{Z}/n\mathbb{Z}$ si et seulement si x et n ne sont pas premiers entre eux.
 - **b)** Déterminer les diviseurs de $\overline{0}$ dans $\mathbb{Z}/30\mathbb{Z}$.
- 5. Montrer que les assertions suivantes sont équivalentes.
 - (i). $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ est un corps.
 - (ii). $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ est un anneau intègre.
- (iii). n est premier.
- **6. Résolution d'une équation.** Dans cette question, n désigne un nombre premier.
 - a) Résoudre dans $\mathbb{Z}/n\mathbb{Z}$ l'équation $\overline{x}^2 \overline{1} = \overline{0}$.
 - **b)** En déduire que les seuls éléments de $\mathbb{Z}/n\mathbb{Z}$ qui sont leur propre inverse sont $\overline{1}$ et $\overline{n-1}$.
- 7. Théorème de Wilson. n est un nombre premier si et seulement si n divise 1 + (n-1)!.
 - a) Montrer l'implication directe lorsque n=2.
 - **b)** Soit $n \ge 3$ un nombre premier. Montrer que $\prod_{k=1}^{n-1} \overline{k} = \overline{n-1}$.
 - c) En déduire le théorème de Wilson.

Stanislas A. Camanes