14 novembre 2009

* * *

L'usage des calculatrices est interdit.

Un grand soin devra être apporté à la rédaction.

Attention, la durée est de 2 heures.

* * *

Exercice 1.

- **1.** Résoudre dans \mathbb{C} l'équation $(z+i)^5 (z-i)^5 = 0$.
- **2.** Soient E l'espace vectoriel de dimension 3 orienté et \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} , \overrightarrow{t} trois vecteurs de E. Rappeler la définition du déterminant de trois vecteurs puis montrer que

$$(\overrightarrow{u} \wedge \overrightarrow{v}) \cdot (\overrightarrow{w} \wedge \overrightarrow{t}) = (\overrightarrow{u} \cdot \overrightarrow{w})(\overrightarrow{v} \cdot \overrightarrow{t}) - (\overrightarrow{u} \cdot \overrightarrow{t})(\overrightarrow{v} \cdot \overrightarrow{w}).$$

3. Déterminer la solution de l'équation différentielle

$$y'(x) + \tan(x)y(x) = \cos(x), x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

telle que y(0) = 1.

4. Trouver les fonctions à valeurs réelles solutions de l'équation différentielle $y''(x) + y'(x) + 3y(x) = e^x$, $x \in \mathbb{R}$.

Exercice 2. (Étude d'une équation cartésienne) On considère l'espace affine euclidien muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$. On considère la conique C d'équation cartésienne

$$y^{2} - \sqrt{3}xy - 2\sqrt{3}x + (4 - 3\sqrt{3})y + 6 - 6\sqrt{3} = 0.$$

- 1. De quel genre de conique s'agit-il?
- **2.** On considère le point O' de coordonnées cartésiennes (-3, -2). Montrer qu'une équation cartésienne de C dans le repère $(O', \overrightarrow{i}, \overrightarrow{j})$ est $(y')^2 \sqrt{3}x'y' + 2 = 0$.
- **3.** Soient \overrightarrow{u} (resp. \overrightarrow{v}) le vecteur image de \overrightarrow{i} (resp. \overrightarrow{j}) par la rotation d'angle $-\pi/3$. Donner une équation cartésienne de \mathcal{C} dans le repère $(O', \overrightarrow{u}, \overrightarrow{v})$.
- **4.** Déterminer les sommets de \mathcal{C} dans le repère $(O', \overrightarrow{u}, \overrightarrow{v})$ puis dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$.

Exercice 3. (Étude d'une courbe paramétrique) On considère la courbe définie en coordonnées polaires par

$$r(\theta) = 4\sin^2(\theta)\cos(\theta).$$

- 1. Étude de la courbe. On note Γ son support.
- a) Montrer que l'intervalle d'étude peut successivement être réduit à $[-\pi/2, \pi/2]$ puis à $[0, \pi/2]$. Vous expliquerez comment obtenir le tracé définitif de Γ .
 - **b)** Tracer l'allure de la courbe Γ .
- **2.** Soit $x \in]0,1[$. Montrer qu'il existe exactement 4 points distincts de Γ d'abscisse égale à x.

Problème. (Étude partielle des solutions de l'équation différentielle y'' + qy = 0) Soit q une fonction continue, définie sur \mathbb{R} et à valeurs dans \mathbb{R} . On appelle solution de l'équation différentielle (E) : y'' + qy = 0 toute

1/2 & Lamanes

fonction y définie sur \mathbb{R} et à valeurs dans \mathbb{R} , deux fois dérivable, qui vérifie y''(t) + q(t)y(t) = 0, pour tout nombre réel t.

On admettra (*Théorème de Cauchy-Lipschitz*) que, pour tous nombres réels t_0, y_0, y'_0 , il existe une unique solution de (E) qui satisfait

$$y(t_0) = y_0, y'(t_0) = y'_0.$$

On dit qu'une fonction est positive (resp. négative) si pour tout nombre réel t, $f(t) \ge 0$ (resp. $f(t) \le 0$).

1. Soient y, z deux solutions de (E). Montrer que la fonction yz' - y'z est constante.

(Cette fonction s'appelle le Wronskien du couple (y, z).)

 ${\bf 2.}$ On désigne par y_1 et y_2 les solutions de l'équation (E) qui satisfont

$$y_1(0) = 1$$
 , $y_1'(0) = 0$,

$$y_2(0) = 0$$
 , $y_2'(0) = 1$.

- a) Calculer la valeur de $y_1y_2' y_2y_1'$.
- **b)** Les fonctions y_1 et y_2 peuvent elles avoir un zéro commun, c'est-à-dire, existe-t-il un réel $t_0 \in \mathbb{R}$ tel que $y_1(t_0) = y_2(t_0) = 0$?
- c) Montrer que z est une solution de (E) si et seulement si il existe deux constantes réelles λ , μ telles que $z = \lambda y_1 + \mu y_2$.

(On pourra montrer, en utilisant le théorème de Cauchy-Lipschitz, que toute solution z de l'équation différentielle s'écrit sous la forme $z = z(0)y_1 + z'(0)y_2$.)

- **d)** Montrer que si z est solution de l'équation différentielle, le couple (λ, μ) défini à la question précédente est unique.
- 3. Montrer que si q est une fonction paire, la fonction y_1 est paire et la fonction y_2 est impaire.

2/2 to. Camanes