STANISLAS D.M. 22

Devoir à la Maison Produit de Cauchy & Théorème de Mertens à rendre le 11 avril 2016

MPSI 1 2h

Soient (a_n) et (b_n) deux suites à valeurs réelles. Pour tout entier naturel n, on pose

$$c_n = \sum_{k=0}^n a_k b_{n-k}.$$

La série $\sum c_n$ est le produit de Cauchy des séries $\sum a_n$ et $\sum b_n$. Pour tout entier naturel n, nous noterons $A_n = \sum_{k=0}^n a_k$, $B_n = \sum_{k=0}^n b_k$ et $C_n = \sum_{k=0}^n c_k$.

- **1. Un contre-exemple.** Pour tout entier naturel n, on pose $a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}$
 - a) Étudier le comportement de $\sum a_n$ et de $\sum b_n$.
 - **b)** Que dire du produit de Cauchy des séries $\sum a_n$ et $\sum b_n$?
- **2.** Le cas positif. On suppose dans cette question que les suites (a_n) et (b_n) sont à termes positifs et que leurs séries convergent respectivement vers les réels A et B.
 - a) Montrer que pour tout entier naturel n,

$$C_n \leqslant A_n \cdot B_n$$
.

- **b)** En déduire que $\sum c_n$ est convergente vers un réel C.
- c) Montrer que pour tout $n \in \mathbb{N}$, $A_n \cdot B_n \leqslant C_{2n}$. En déduire que $C = A \cdot B$.
- 3. Le cas absolument convergent. On suppose dans cette question que les séries $\sum a_n$ et $\sum b_n$ convergent absolument. On note A et B les limites respectives de $\sum a_n$ et $\sum b_n$.
 - **a)** Soit $n \in \mathbb{N}$. Montrer que si $\sum_{k=0}^{n} |a_k| \leq M$ et $\sum_{k=0}^{n} |b_k| \leq N$, alors $\sum_{k=0}^{n} |c_k| \leq MN$.
 - **b)** En déduire que $\sum c_n$ converge absolument. On notera C la limite de $\sum c_n$.
 - c) Montrer que pour tout entier naturel n,

$$\left| \sum_{k=0}^{n} a_k \cdot \sum_{k=0}^{n} b_k - \sum_{k=0}^{n} c_k \right| \leqslant \left| \sum_{k=0}^{n} |a_k| \cdot \sum_{k=0}^{n} |b_k| - \sum_{k=0}^{n} \sum_{j=0}^{k} |a_j \cdot b_{n-j}|.$$

En déduire que $C = A \cdot B$.

- **4.** Application à la série exponentielle. Soient $a, b \in \mathbb{R}$.
 - a) Montrer que la série $\sum \frac{a^n}{n!}$ converge. Sa limite sera notée e(a).
 - **b)** Montrer que $e(a) \cdot e(b) = e(a+b)$.
- **5. Théorème de Mertens.** On suppose que $\sum a_n$ converge absolument et que $\sum b_n$ converge. On notera A et B les limites de $\sum a_n$ et $\sum b_n$.
- a) Montrer que si les suites $(C_{2n} A_n B_n)$ et $(C_{2n+1} A_{n+1} B_n)$ convergent vers 0, alors (C_n) converge vers un réel C tel que C = AB.
 - **b)** Conclure.

La question 1. montre qu'on ne peut pas supprimer l'hypothèse d'absolue convergence sur les deux séries.

Stanislas A. Camanes