STANISLAS Thème

Théorème de MERTENS

PSI

2020-2021

Soient (a_n) et (b_n) deux suites à valeurs réelles. Pour tout entier naturel n, on pose

$$c_n = \sum_{k=0}^n a_k b_{n-k}.$$

La série $\sum c_n$ est le produit de CAUCHY des séries $\sum a_n$ et $\sum b_n$. Pour tout entier naturel n, nous noterons $A_n = \sum_{k=0}^n a_k$, $B_n = \sum_{k=0}^n b_k$ et $C_n =$

 $\sum_{k=0}^{n} c_k$ leurs sommes partielles.

1. Un contre-exemple. Montrer qu'il existe deux suites (a_n) et (b_n) telles que $\sum a_n$ et $\sum b_n$ convergent mais telle que $\sum c_n$ diverge

On souhaite montrer le **théorème de Mertens** : Si $\sum a_n$ converge absolument et $\sum b_n$ converge, alors $\sum c_n$ converge et

$$\left(\sum_{n=0}^{+\infty} a_n\right) \cdot \left(\sum_{n=0}^{+\infty} b_n\right) = \sum_{n=0}^{+\infty} c_n.$$

2. Le cas positif. On suppose, uniquement dans cette question, que (a_n) et (b_n) sont à valeurs positives. Montrer que pour tout entier naturel n,

$$C_n \leqslant A_n \cdot B_n \leqslant C_{2n}$$
.

Conclure.

3. Montrer que, pour tout réel $\varepsilon > 0$, il existe un entier naturel n_0 tel que pour tout $(n,m) \in \mathbb{N}^2$, si $n \ge n_0$ et $m \ge n_0$, alors

$$\sum_{k=n}^{m} |a_k| \leqslant \varepsilon \text{ et } \left| \sum_{k=n}^{m} b_k \right| \leqslant \varepsilon.$$

4. Soit $n \in \mathbb{N}$. Montrer que

$$C_{2n} - A_n B_n = \sum_{j=0}^n a_j \left(\sum_{k=n+1}^{2n-j} b_k \right) + \sum_{j=n+1}^{2n} a_j \left(\sum_{k=0}^{2n-j} b_k \right).$$

- **5.** En déduire que $(C_{2n} A_n B_n)$ converge vers 0.
- **6.** Montrer de manière analogue que $(C_{2n+1} A_n B_n)$ converge vers 0.
- 7. Conclure.
- 8. Peut on supprimer l'hypothèse d'absolue convergence dans le théorème de Mertens?

Mathématiciens

CAUCHY Augustin-Louis (21 août 1789 à Paris-23 mai 1857 à Sceaux).