STANISLAS Thème

Adhérence de l'ensemble des matrices diagonalisables

PSI 2020-2021

Soit n un entier naturel supérieur ou égal à 2 et $\mathbb K$ le corps $\mathbb R$ ou $\mathbb C.$ On note

- * $\mathcal{D}_n(\mathbb{K})$ l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{K})$,
- * $\mathscr{D}'_n(\mathbb{K})$ l'ensemble des matrices de $\mathscr{M}_n(\mathbb{K})$ ayant n valeurs propres distinctes dans \mathbb{K} .

On note $(E_{i,j})_{1\leqslant i,j\leqslant n}$ la base canonique de $\mathscr{M}_n(\mathbb{K})$ et, pour tout $\lambda\in\mathbb{R}$ et r>0, $\mathscr{B}(\lambda,r)=]\lambda-r,\lambda+r[$ la boule euclidienne ouverte de \mathbb{R} centrée en λ et de rayon r.

Dans ce problème, on identifiera l'adhérence de $\mathscr{D}_n(\mathbb{K})$ et de $\mathscr{D}'_n(\mathbb{K})$ en distinguant le comportement en fonction du corps.

Partie I : Densité dans $\mathcal{M}_n(\mathbb{C})$

1. Soit $T=(t_{i,j})_{1\leqslant i,j\leqslant n}\in \mathscr{M}_n(\mathbb{K})$ une matrice triangulaire supérieure. On note $\widetilde{T_k}=([\widetilde{T_k}]_{i,j})$ la matrice définie par

$$[\widetilde{T_k}]_{i,j} = \begin{cases} t_{i,i} + \frac{1}{i+k} & \text{si } i = j \\ t_{i,j} & \text{sinon} \end{cases}$$

- a) Montrer que (T_k) converge vers T.
- **b)** Montrer qu'il existe $k_0 \in \mathbb{N}$ tel que, pour tout $k \geq k_0$, T_k appartient à $\mathscr{D}'_n(\mathbb{K})$.
- **2.** En déduire que $\mathscr{D}'_n(\mathbb{C})$ et $\mathscr{D}_n(\mathbb{C})$ sont denses dans $\mathscr{M}_n(\mathbb{C})$.

Partie II: Un peu plus de topologie

On cherche, dans cette partie, à identifier l'intérieur de $\mathcal{D}_n(\mathbb{C})$.

3. Montrer que $\mathscr{D}'_n(\mathbb{C}) \subset \mathscr{D}_n(\mathbb{C})$.

4. Soit $M \in \mathcal{D}_n(\mathbb{C})$ semblable à une matrice diagonale $D = \text{Diag}(\lambda_1, \ldots, \lambda_n)$. On suppose que $\lambda_1 = \lambda_2$ et on pose $D_k = D + \frac{1}{k}E_{1,2}$. Montrer que M n'appartient pas à l'intérieur de $\mathcal{D}_n(\mathbb{C})$.

On vient donc de montrer que $\overset{\circ}{\mathscr{D}}_n(\mathbb{C}) \subset \mathscr{D}'_n(\mathbb{C})$.

- **5.** Soit $M \in \mathcal{D}'_n(\mathbb{C})$ et (M_p) une suite de matrices qui converge vers M. Notons $\mathrm{Sp}(M) = \{\lambda_1, \ldots, \lambda_n\}$ et $\delta = \frac{1}{3} \min\{|\lambda_i \lambda_j|, i \neq j\}$.
- a) Soit $k \in \mathbb{N}$. On suppose par l'absurde que $\operatorname{Sp}(M_k) \cap \mathscr{B}(\lambda_1, \delta) = \emptyset$. Montrer que le polynôme caractéristique de M_k , noté χ_k , satisfait $|\chi_k(\lambda_1)| \geq \delta^n$.
- **b)** En déduire qu'il existe $k_0 \in \mathbb{N}$, tel que pour tout $k \ge k_0$ et pour tout $i \in [1, n]$,

$$\operatorname{Sp}(M_k) \cap \mathscr{B}(\lambda_i, \delta) \neq \emptyset$$

6. En déduire que $\mathring{\mathscr{D}}_n(\mathbb{C}) = \mathscr{D}'_n(\mathbb{C})$.

Partie III : Et dans $\mathcal{M}_n(\mathbb{R})$?

On pose $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

- 7. Montrer que l'application qui, à la matrice A, associe le discriminant de son polynôme caractéristique, est continue.
- $\bf 8.$ En déduire qu'il n'existe pas de suite de matrices diagonalisables qui converge vers A.
- **9.** En déduire que $\mathscr{D}_n(\mathbb{R})$ n'est pas dense dans $\mathscr{M}_n(\mathbb{R})$.