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Abstract
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critical temperature of a directed polymer in a random environment
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distributions of the environment.

Keywords: directed polymer, random environment, partition function.
Mathematic Classification : 60K37

∗Laboratoire Jean Leray, UMR 6629, Université de Nantes, BP 92208, F-44322 Nantes
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1 Introduction

A large number of the disordered systems which have attracted the attention
of mathematicians and physicists enjoy the following property. There exists
a critical inverse temperature β(c) such that for β < β(c) (resp. β > β(c))
the annealed and quenched free energies are equal (resp. different).
Usually, a second moment method yields a lower bound β2 ≤ β(c). Whether
the equality β2 = β(c) holds is an important issue which has received different
answers. For example, there is equality for the Sherrington Kirkpatrick
model of spin glasses with no external field, whereas there is no equality for
the corresponding mean field model, the REM [12].
For directed polymers in a random environment, we know that in general
β2 < β(c) for the mean field model of the tree [3, 9], and the purpose of this
paper is to answer this question on Zd with a criterion depending on the
dimension d and on the distribution of the environment.

Let P be the distribution of simple random walk (ωn)n∈N on Zd, starting
from the origin. The restriction of P to the set of nearest neighbor paths of
length n

Ωn =
{

ω ∈ (Zd)n+1 : ω0 = 0, ‖ωi − ωi−1‖ = 1, 1 ≤ i ≤ n
}

is the uniform measure.
Given a random environment (g(i, x))i∈N,x∈Zd , a set of IID random variables
under the probability Q, having finite exponential moments

λ(β) = lnQ
(
eβg(1,1)

)
< +∞ (β ∈ R) ,

we define the energy of a path of length n as Hn(ω) = Hn(ω, g) =
∑n

i=1 g(i, ωi)
and the polymer measure

µn(ω) =
1

Zn
eβHn(ω).

Hence the partition function is

Zn = Zn(β, g) = P
(
eβHn

)
=

1
(2d)n

∑
ω∈Ωn

eβHn(ω) .

As usual, the behavior of a typical path under the random measure µn is
dictated by the asymptotic behavior of the partition function.
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E. Bolthausen [2] showed that Wn = Zn(β)e−nλ(β) is a positive martingale,
that converges almost surely to a finite random variable W∞ that satisfies a
0-1 law: Q(W∞ = 0) ∈ {0, 1}.
By a clever use of FKG’s inequality, Comets and Yoshida [6] proved the
existence of a critical temperature β(c) such that :

• for 0 ≤ β < β(c), W∞ > 0, a.s. (weak disorder phase);

• for β > βc, W∞ = 0, a.s. (strong disorder phase).

Furthermore, they established a diffusive behavior in weak disorder, and
Carmona and Hu [5] proved a non-diffusive behavior in strong disorder.
For dimensions d = 1, 2 one can prove that β(c) = 0 (see [4, 7]), therefore
we shall restrict ourselves, in the following, to dimensions d ≥ 3. Let us
observe that it is believed (see [5]) that this critical temperature coincides
with the annealed/quenched transition critical temperature β(c∗) which can
be defined as

β(c∗) = sup {β > 0 : p(β) = λ(β)}
with p(β) the (limit) free energy

p(β) = lim
n→+∞

1
n
Q(lnZn(β)) = a.s. lim

n→+∞

1
n

lnZn(β) .

To state our main result, we introduce p(t, x) the probability that two in-
dependent random walks starting from 0 meet for the first time t at level
x:

p(t, x) = P⊗2
(
ω1

j 6= ω2
j , 1 ≤ j < t, ω1

t = ω2
t = x

)
(t ≥ 1, x ∈ Zd) .

Let

ρ(α) =
∑
t,x

p(t, x)α/2 , Dρ = {α > 0, ρ(α) < +∞}

hν(α) = −
∑
t,x

(
p(t, x)α/2

ρ(α)

)
ln

(
p(t, x)α/2

ρ(α)

)
= ln ρ(α)− α

ρ′(α)
ρ(α)

(α ∈ Dρ).

To avoid trivialities we shall assume that for 2− ε < α ≤ 2 we have

βα = sup {β > 0 : λ(αβ)− αλ(β) < − ln ρ(α)} < +∞ ,

and we consider another entropy

hQ(α) = Q
((

eαβαg

Q(eαβαg)

)
ln
(

eαβαg

Q(eαβαg)

))
= αβαλ′(αβα)− λ(αβα) .
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Theorem 1. If hν(2) < hQ(2) then β2 < β(c).

Although this criterion is based on Derrida and Evans Theorem 2 (see sec-
tion 2), it is much simpler to use (numerically). We only need to compute
one number hν(2) for each graph Zd, instead of having to determine the
whole function α 7→ ρ(α).
Let us stress the fact that the criterion of Theorem 1 does not compare to
the criterion of Birkner [1] (which relies on an unpublished paper).

The structure of the paper is the following : Section 2 contains Derrida and
Evans Theorem 2, Section 3 the proof of Theorem 1. In Section 4 some
numerical applications to different distributions of the environment are de-
velopped. These numerical simulations are done to overcome the theoretical
difficulty of understanding the network entropy hν(2). This quantity is ap-
proximated by a finite sum whose terms are simulated using Monte-Carlo
method. A rough upper bound is established to estimate the error. The
appendix contains the computer programs we used.

2 The fractional moment method

We shall give a self contained proof of the following result of Derrida and
Evans [8].

Theorem 2. If there exists 1 < α ≤ 2 such that λ(αβ)−αλ(β) < − ln ρ(α)
then β ≤ β(c).

For α = 2, we have ρ(2) = P⊗2
(
∃t ≥ 1, ω1

t = ω2
t

)
and this is the second

moment criteria (see Bolthausen [2]).

Proof. The first step of the proof is the use of the following characterization
of the weak disorder phase (see [4, 7]):

W∞ > 0 a.s. ⇐⇒ (Wn)n∈N is Uniformly Integrable .

Hence, if supn Q(Wn(β)α) < +∞ for some α > 1 then we are in weak
disorder and β ≤ β(c). In order to obtain some improvement on the sec-
ond moment method, we shall restrict ourselves to α ∈]1, 2] and use the
inequality (for γ = α/2):(∑

xi

)γ
≤
∑

xγ
i , γ ∈ [0, 1], xi ≥ 0. (1)
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We first compute the second moment of Zn. To do this we introduce two
independent random walks and then split the expectations according to their
meeting times : if r = (ti, xi, 1 ≤ i ≤ m) ∈ (Nn×Zd

n)m we consider the event{
ω1 r= ω2

}
=
{
ω1

ti = ω2
ti = xi, 1 ≤ i ≤ m,ω1

t 6= ω2
t , t 6∈ {ti}

}
,

and compute

Z2
n = P⊗2

(
eβ(Hn(ω1)+Hn(ω2))

)
=

n∑
m=0

∑
r∈(Nn×Zd

n)m

Y (r) , with Y (r) = P⊗2
(
eβ(Hn(ω1)+Hn(ω2))1

ω1 r
=ω2

)
Combining with inequality (1), we obtain,

Q(Zα
n ) = Q

(
(Z2

n)α/2
)

= Q

{ n∑
m=0

∑
r

Y (r)

}α/2


≤
n∑

m=0

∑
r

Q
[
Y (r)α/2

]
.

Let’s concentrate now on the quantity Y (r). We define the partial Hamilto-
nian :

Hj2
j1

(ω) =
j2∑

i=j1+1

g(i, ωi).

We can thus decompose, noting ωi,j = (ωk)k∈{ti,...,tj}, t0 = 0 and tm+1 = n,

Y (r) = P

{
m∏

i=1

e
β

“
H

ti
ti−1

(ω1)+H
ti
ti−1

(ω2)
”
1
{ω1

i−1,i

(ti,xi)= ω2
i−1,i}

×eβ(Hn
tm

(ω1)+Hn
tm

(ω2))1{ω1
m,m+1 6=ω2

m,m+1}

}
=

m∏
i=1

Yi−1,i × Ỹm,n,

with

Yi−1,i = P⊗2

(
e
β

“
H

ti
ti−1

(ω1)+H
ti
ti−1

(ω2)
”
1{ω1

tj
=ω2

tj
=xj , j=i−1,i ; ω1

t 6=ω2
t ,ti−1<t<ti}

)
,

Ỹm,n = P⊗2
(
eβ(Hn

tm
(ω1)+Hn

tm
(ω2))1{ω1

tm
=ω2

tm
=xm ; ω1

t 6=ω2
t , tm<t≤n}

)
.
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Hence, using the independence of the environment with respect to the tem-
poral evolution :

Q [Zα
n ] ≤

n∑
m=0

∑
r

m∏
i=1

Q
[
Y

α/2
i−1,i

]
Q
[
Ỹ α/2

m,n

]
.

Since the random walks never meet after time tm, Jensen’s inequality yields

Q
[
Ỹ α/2

m,n

]
≤ P

(
ω1

j 6= ω2
j , tm < j ≤ n ; ω1

tm = ω2
tm = xm

)α/2
eα(n−tm)λ(β)

≤ e−αtmλ(β).

The environment is equally distributed, so we can write our upper bound

lim sup
n

Q [Wα
n ] ≤

∞∑
m=0

∑
r∈(N×Zd)m

m∏
i=1

Q
[
e−α(ti−ti−1)λ(β)Y

α/2
i−1,i

]

≤
∞∑

m=0

 ∑
t1∈N,x1∈Zd

Q
[
e−αt1λ(β)Y

α/2
0,1

]
m

.

Thanks again to the independence of the environment, denoting (t, x) = (t1, x1)
and using Jensen’s inequality, we get

Q

[
Y

α/2
0,1

eαtλ(β)

]
= e−αtλ(β)Q

[
P
[
eβ

Pt−1
i=1 g(i,x1

i )+g(i,x2
i )e2βg(t,x)1

ω1
(t,x)
= ω2

]α/2
]

= e−αtλ(β)eλ(αβ)Q
[
P
[
eβ

Pt−1
i=1 g(i,x1

i )+g(i,x2
i )1

ω1
(t,x)
= ω2

]α/2
]

≤ eλ(αβ)−αtλ(β)QP
[
eβ

Pt−1
i=1 g(i,x1

i )+g(i,x2
i )1

ω1
(t,x)
= ω2

]α/2

= eλ(αβ)−αtλ(β)e2α
2

λ(β)(t−1)P
(

ω1 (t,x)
= ω2

)α/2

= eλ(αβ)−αλ(β)p(t, x)α/2.

Finally, we find the following upper bound:

lim sup
n

Q
[
Wα/2

n

]
≤

∞∑
m=0

{
eλ(αβ)−αλ(β)ρ(α)

}m
.
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Therefore, if there exists α ∈ (1, 2] such that

λ(αβ)− αλ(β) < − ln ρ(α),

then the martingale (Wn(β))n is uniformly integrable.

Remark 1. For a directed polymer on a tree, this method yields the critical
temperature by letting α ↓ 1.

3 Proof of Theorem 1

The first subsections are devoted to the proof of Theorem 1. Since we derive
Theorem 1 from Theorem 2, we can wonder if we loose something in the
process, but we shall see this is not the case for a Gaussian environment.

3.1 The function ρ

Since 0 ≤ p(t, x) ≤ 1, the function ρ is non increasing on (α0,+∞) with
α0 = inf {α > 0 : ρ(α) < +∞}. The properties of ρ we use in the sequel are
summarized in the

Proposition 3. (1) ρ(2) = 1−qd = P⊗2
(
∃t ≥ 1, ω1

t = ω2
t

)
< 1 (for d ≥ 3).

(2) 4
d ≤ α0 ≤ 1 + 2

d < 2.

(3) There exists 1 < α1 < 2 such that ρ(α1) = 1.

Proof. (3) is an easy consequence of (2), (1) and the continuity of ρ. (1) We
have:

ρ(2) =
∑
t,x

p(t, x) =
∑

t

P⊗2

(
1(ω1

j 6=ω2
j ,∀j<t)

∑
x

1(ω1
t =ω2

t =x)

)
=
∑

t

P⊗2
(
ω1

j 6= ω2
j ,∀j < t ; ω1

t = ω2
t

)
= P⊗2

(
∃t ≥ 1, ω1

t = ω2
t

)
.

The lower bound. For 1 ≤ α ≤ 2, we have by inequality (1),

ρ(α) =
∑
t≥1

∑
x

p(t, x)α/2 ≥
∑
t≥1

(∑
x

p(t, x)

)α/2

=
∑

t

P⊗2
(
ω1

t = ω2
t , ω

1
j 6= ω2

j ,∀j < t
)α/2
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Since Griffin [10] proved that

P⊗2
(
ω1

t = ω2
t , ω

1
j 6= ω2

j ,∀j < t
)
� P⊗2

(
ω1

t = ω2
t

)
� P(ω2t = 0) � t−d/2 ,

we see that ρ(α) = +∞ when α ≤ 4/d.

The upper bound. If we suppress the avoiding condition in the definition
of p(t, x) we obtain

p(t, x) ≤ r(t, x)2 , with r(t, x) = P(ωt = x) .

We are going to prove that
∑

r(t, x)α < +∞ if α > 1 + 2/d and this will
imply that α0 ≤ 1 + 2/d.
First we apply the local central limit theorem (see Theorem 1.2.1 of Lawler [11]):

sup
x
|r(t, x)− r̄(t, x)| ≤ Ct−1+d/2

and thus we shall prove that ρ̄(α) =
∑

r̄(t, x)α < +∞, if α > 1 + 2/d, with

r̄(t, x) = 2
(

d

2πt

)d/2

e−
d|x|2

2t .

Since,

N(
√

R) = ]
{

x ∈ Zd,
√

R ≤ x ≤
√

R + 1
}
∼ CdR

d/2−1

we need to show that

∞∑
t=1

1
tαd/2

t∑
R=1

Rd/2−1e−
αdR
2t < +∞

Comparing series and integral for a monotone function, this amounts to
check that∑
R≥1

Rd/2−1

∫ +∞

R
t−αd/2e−

αd
2t

R dt =
(∫ +∞

1
u−αd/2e−

αd
2u du

)∑
R≥1

R
d
2
(1−α) < +∞

and this is satisfied since α > 1 + 2/d.
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3.2 The proof of Theorem 1

Fix α ∈ (2− ε, 2], so that if

Ψ(α, β) = λ(αβ)− αλ(β) + ln ρ(α) ,

the function β → Ψ(α, β) has the following properties:

• It is C1 and ∂Ψ
∂β = α(λ′(αβ) − λ′(β)) > 0 for β > 0 since λ is strictly

convex (for a non degenerate environment).

• Ψ(α, 0) = ln ρ(α) < 0 if ε is small enough since ρ(2) = 1− qd < 1.

• There exists β > 0 such that Ψ(α, β) > 0 by assumption.

Therefore, there is a unique βα > 0 such that Ψ(α, βα) = 0.
If we prove that ∂βα

∂α |α=2< 0 then we are done, since there exists then
α ∈ (1, 2) such that βα > β2, and thus, by definition of βα, there exists
γ ∈ (β2, βα) such that Ψ(α, γ) < 0 and we apply Theorem 2.

By the implicit function theorem, we have

∂βα

∂α
= −

∂Ψ
∂α
∂Ψ
∂β

(α, βα)

and thanks to ∂Ψ
∂β = α(λ′(αβ) − λ′(β)) > 0 we only need to prove that

∂Ψ
∂α > 0.
A straightforward computation yields

α
∂Ψ
∂α

(α, βα) = hQ(α)− hν(α) ,

therefore if hQ(2)− hν(2) > 0, then β ≤ β(c).

3.3 In a Gaussian environment

In Gaussian environment, we prove that function α 7→ lg(βα) is concave.
Thus, hQ(2) > hν(2) is equivalent with the existence of α? such that β2 <
βα? < β(c).

Indeed, we have λ(β) = β2/2. Therefore, for any α ≥ α1 (that is ρ(α) ≤ 1),
we have

βα = 2
(
− ln ρ(α)

α(α− 1)

) 1
2

.
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Tedious but straightforward computations yield successively

∂α

(
β2

α

2

)
=

Γ(α)
α(α− 1)

, with Γ(α) = (2α− 1) ln ρ(α)− (α− 1)
ρ′(α)
ρ(α)

,

∂αΓ(α) = 2 ln ρ(α)− α(α− 1)Varνα(ln p(., .)
1
2 ) < 0

with να the probability measure defined on N∗ × Zd by ν(t, x) = p(t,x)α/2

ρ(α) .
Therefore, the function α → λ(βα) is concave, and the assumptions hQ(2)−
hν(2) > 0, that is ∂αβα |α=2< 0, and ∃α < 2, βα > β2 are equivalent, so
Theorem 1 is not weaker than Theorem 2 in the Gaussian case.

4 Numerical Results

In this section we present some applications of Theorem 1. Studying the
function ρ, we have seen that the quantities p(t, x) are very difficult to un-
derstand theoretically since they are related to self-avoiding random walks.
Thus, to check the entropic condition hν(2) < hQ(2), we use numerical sim-
ulations. In the following lines we explain to what extend our numerical
simulations provide an answer to the initial question : Does β2 = βc ? We
expect that the speed of convergence is faster than the one obtained in the
following.

We compute approximate values of hν(2) = −
∑

t∈N
∑

x∈Zd
p(t,x)
1−qd

ln p(t,x)
1−qd

.
We simulate N ∼ 50000 random walks of length 1000 and look at their
first meeting time to obtain an approximation of p(t, x) for t ≤ 1000. The
value of q̃d thus obtained is very close to the one (denoted qd) obtained by
Griffin [10].

d 1− qd q̃d − qd hν(2)
3 0.340 −0.005 4.808
4 0.193 −0.003 3.855
5 0.135 −0.001 3.608

Thus we get a close approximation of the environment entropy hν(2). In-
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deed, let us recall that α0 ≤ 1 + 2/d ≤ 1.8. A rough approximation gives

−
∑
t≥t0

∑
x∈Zd

p(t, x)
1− qd

ln
p(t, x)
1− qd

≤ C
∑
t≥t0

∑
x∈Zd

(
p(t, x)
1− qd

)0.9

≤ C
∑
t≥t0

∑
x;|x|≤t0

r(t, x)1.8

≤ C t−0.2
0 .

Then we compute hQ(2) = 2β2λ
′(2β2) − λ(2β2) for different environments.

We estimate the inverse temperature β2 solving numerically the equation
λ(2β2)− 2λ(β2) = − ln(1− qd).
The three environments considered are symmetric. For the Binomial envi-
ronment, |g(1, 1)| is binomial with parameters n = 5 and p = 0.01. For
the Poisson environment, |g(1, 1)| is Poisson of parameter k = 0.0001. In
opposition to these environments, simple computation entails that Gaussian
behavior does not depend on the variance.

d hν(2) hQ(2)
Binomial Poisson Gaussian

3 4.808 4.14 6.418 2.158
4 3.855 6.228 10.295 3.29
5 3.608 7.421 12.726 4.004

We notice that for a binomial environment, our criteria ensures β2 6= βc even
in dimension 3.

What is the influence of the dimension d ? On the one hand, it is easy to
prove that the function d 7→ hQ(2) is non decreasing. On the other hand,
we expect the function d 7→ hν(2) to be non increasing, but we are unable to
prove it. Consequently, it seems that the critical dimension for our criteria
is 4 for Binomial, 3 for Poisson and 5 for Gaussian environments.

Appendix : the program

We give here the matlab program used to compute p(t, x). The result is
a row vector. This vector doesn’t contain the information of which t and
which x are considered.

%P(d,n,N) 1<i<n
%d : dimension
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%n : maximal length of the r.w.
%N : number of experiments

%Initialising the counter
%colomn : [coord of the meeting point; moment; counter]
R=zeros(1,d+1);

for i=1:N
%Constructing the two r.w.
x=2*floor(2*rand(1,2*n))-1; %direction of the jump
t=floor(d*rand(1,2*n))+1; %jumping coord.

%number of the jumping coordinate increments
t=t+[0:d:d*(2*n-1)];

%Increments matrix
xi=zeros(2*d,n);
xi(t)=x;

X=cumsum(xi,2);

clear xi;clear x;clear t;

%row vector : 1 if the r.w. are at the same point, 0 otherwise
z=prod(double(X(1:d,:)==X(d+1:2*d,:)));
X=X(1:d,:);
%X : [coord time]
X=[(1:n)’ X’];

if z==zeros(1,length(z))
;

else
I=find(z’); %meeting times
k=I(1);
X=X(k,:); %meeting points
R=[R;X];

end
clear X; clear z;clear k;

end
%suppress the first row
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[r1 r2]=size(R);
R=R(2:r1,:);
r1=r1-1;

%order the rows in alphabetic order
R=sortrows(R);
%1 if 2 successive rows are equal in R, 0 otherwise
z=prod(double(R==[zeros(1,d+1);R(1:r1-1,:)]),2);
I=find(z==zeros(length(z),1));
clear z;
R=R(I,:);
i=length(I);

%number of r.w. meeting in each site
c=[I(2:i);r1+1]-I;

y=c/N;
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