
HEAT CONDUCTION NETWORKS: DISPOSITION OF HEAT BATHS
AND INVARIANT MEASURE

ALAIN CAMANES

Abstract. We consider a model of heat conduction networks consisting of oscillators in

contact with heat baths at different temperatures. Our aim is to generalize the results

concerning the existence and uniqueness of the stationnary state already obtained when the
network is reduced to a chain of particles. Using Lasalle’s principle, we establish a condition

on the disposition of the heat baths among the network that ensures the uniqueness of the

invariant measure. We will show that this condition is sharp when the oscillators are linear.
Moreover, when the interaction between the particles is stronger than the pinning, we prove

that this condition implies the existence of the invariant measure.

1. Definitions and Results

1.1. The motivations. We consider an arbitrary graph. At each vertex of this graph, there
is a particle interacting with the substrate and with its neighbours. Among these particles,
some are linked to heat baths; an Ornstein-Uhlenbeck process models this interaction. Given
this graph, we establish conditions on the disposition of the heat baths that entails existence
and uniqueness of the invariant measure.

When the graph is reduced to a chain, each extremal particle is connected to a heat bath.
This model has been studied in [EPRB99b, EPRB99a, EH00, RBT02]. The uniqueness of
the invariant measure is obtained using controllability properties. This property is deeply
connected to the geometry of the chain: the behaviour of the extremal particle entails the
behaviour of its neighbour and so on. . . The existence of the invariant measure when the
interaction is stronger than the pinning has also been obtained. These results were used
in [Car07] to solve some variations of this model developed in [BO05] on the one side and [LS04]
on the other.

To avoid the particular geometry of the chain, we work with general networks. These
heat conduction networks have been introduced in [MNV03] and [RB03]. Let us notice that
an Ornstein-Uhlenbeck process is the sum of a damping term and an excitation term. To
understand the effect of each of these quantities, we will not suppose that the heat baths have
non-negative temperatures. A recent work of [BLLO08] uses this kind of result to prove the
existence of a self-consistent temperature profile. We will see that their results are closely
related to the geometry of the network they consider. First we introduce the model. Then we
will state our main results linking existence and uniqueness of the invariant measure to the
disposition of the heat baths. Intuitively, the existence and the uniqueness of the invariant
measure is related to the disposition of the damped particles, i.e. the particles interacting with
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a heat bath. The disposition of the heat baths at non-negative temperatures has an effect on
the regularity of the invariant measure.

1.2. The model. Let G = (V,∼) be a connected graph with vertex set V. Two vertices
i, j ∈ V are nearest neighbours if there is an edge between them: i ∼ j. Every node i ∈ V
holds a particle of unit mass described by its position qi and momentum pi. Each particle
is pinned and interacts with its neighbours. The pinning potential V and the interaction
potential U are both assumed to be convex polynomial functions. The Hamiltonian of this
system is the sum of kinetic and potential energies

H(q, p) =
∑
i∈V

1
2
p2
i + V (qi) +

1
2

∑
j∼i

U(qi − qj)

 .

Among the particles, some of them are damped; the non-empty subset D ⊂ V is called
the damped set. Among the damped particles, there is a non-empty subset ∂V ⊂ D called
the boundary set. Each particle i ∈ ∂V of the boundary set is connected to a heat bath at
(non-negative) temperature Ti. The excitation transmitted by the heat bath is modeled by
a Brownian motion. Thus, the dynamics of the heat conduction network is described by the
Hamiltonian system of stochastic differential equations, for any i ∈ V,

(1)
{
dqi = pi dt,
dpi = −∂qiH dt− pi1i∈D dt+

√
2Ti1i∈∂V dBi,

where {Bi, i ∈ ∂V} are independent Brownian motions.

Remark. Damped particles can be considered as connected to heat baths at possibly null
temperatures.

In the following we write N = |V| the number of particles and n = 2N . We study the
diffusion Z = (q, p), solution of the stochastic differential equation (1) via its semigroup (Pt).
The adjoint of Pt acts on probability measures: for any measurable set A and probability
measure µ,

P ?t µ(A) =
∫

Rn
Pt(z,A)µ(dz).

Finally, L denotes the generator of the diffusion (1). Recall that for any smooth function f in
the domain DL of L,

Lf =
∑
i∈V

∂piH∂qif − ∂qiH∂pif −
∑
i∈D

pi∂pif +
∑
i∈∂V

Ti∂
2
pif

= {H, f} −
∑
i∈D

pi∂pif +
∑
i∈∂V

Ti∂
2
pif,

where {·, ·} denotes Poisson bracket. The operator L? is the formal adjoint of L.
We are interested in the existence and uniqueness of a stationary state for heat conduction

networks, i.e. in probability measures µ such that for any t ≥ 0, P ?t µ = µ, or equivalently,
L?µ = 0.

1.3. The main results. First of all we will recall and complete some results on the harmonic
case, when U(q) = V (q) = q2/2. In this setting, the stochastic differential equation (1)
describing the system is linear.

In the following we will denote (ei)i∈{1,...,n} the canonical base of Rn. A natural space
occurring in heat conduction networks is the controllability space (see e.g. [Won79]). Let M
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Figure 1.1. Example of a heat conduction network : Damped particles are
striped, boundary particles are drawn in black

be an n× n matrix and I ⊂ V a subset of particles. We will denote EM,I the smallest vector
space spanned by (ei+N , i ∈ I) stable by M , i.e.

EM,I = Span
{
Mkei+N , i ∈ I, k ∈ N

}
.

We say that the graph is asymmetric if dim EM,D = n, where M will be defined in equa-
tion (2). Examples suggest that this condition is related to an asymmetric disposition of the
damped particles in the network. Our first theorem states that the existence and uniqueness
of the invariant measure is determined by the position of the damped particles.

Theorem 1. When the potentials are harmonic, there exists a unique invariant measure if
and only if the network is asymmetric, i.e. dim EM,D = n.

When this condition is not satisfied, i.e. dim EM,D 6= n, there exists a quantity invariant
with respect to the Hamiltonian flow and the invariant measure is not unique.

Let us notice that this uniqueness condition was already known (see [EZ04]). We give here
a new proof using completeness and provide an explicit quantity invariant by the Hamiltonian
flow.

The shape of the support of the invariant measure is then described by the position of the
heat baths.

Theorem 2. Assume there exists a unique invariant measure. The invariant measure has full
support if and only if dim EM,∂V = n.

Then we will be interested in the anharmonic case where potentials are only supposed to be
convex polynomials. We will first state a theorem where all the damped particles are excited,
i.e. D = ∂V. Hörmander’s condition will be defined precisely in Section 3.1. The following
theorem will be a straightforward consequence of the weak controllability result obtained
in [Hai05a].

Theorem 3. If D = ∂V and Hörmander’s condition is satisfied, there exists at most one
invariant measure.

Finally, in the more general setting where ∂V ⊂ D, we will provide a condition (see Sec-
tion 3.2, Condition (5)) on the disposition of the damped particles that entails the uniqueness
of the invariant measure. We will show that this condition reduces to the asymmetric dispo-
sition of the heat baths when the potentials are harmonic. This condition will be established
using a dynamic description of the diffusion through Lasalle’s principle. This condition (5)
states that when the damped particles are fixed, the system can only be in the equilibrium
position. Recall that H is convex, thus H reaches its minimum at an equilibrium point c0.

Theorem 4. When the diffusion is asymptotically strong Feller at c0 and the stability condi-
tion (5) is satisfied, the heat conduction network can have at most one invariant measure.
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Notice that this condition does not dependent on the temperatures of the heat baths. We
will discuss the asymptotic strong Feller condition in Appendix A. We will prove that this
regularity condition is satisfied in the harmonic setting as soon as the graph is asymmetric.
We could not reach the generality of anharmonic potentials but we expect that this property
is still true in this setting.

The importance of the stability condition is strengthened by the following fact about ex-
istence of the invariant measure. In [RBT02], it is shown that when the pinning potential
is weaker than the interaction potential and the network is a chain, there exists an invariant
measure. To generalize the method to general networks, we will also have to suppose that the
stability condition is satisfied for a limit Hamiltonian (see Section 4, Condition (6)). We will
call this condition the rigidity condition. Let u (resp. v) be the degree of the polynomial U
(resp. V ).

Theorem 5. If the rigidity condition (6) is satisfied and u ≥ v, i.e. the interaction is stronger
than the pinning, then there exists a unique invariant measure.

Section 2 is devoted to the proofs of Theorems 1 and 2. In Section 3, we will briefly prove
Theorem 3 using results obtained by M. Hairer in [Hai05b]. Then, we will present Lasalle’s
principle and the associated stability condition. Finally, we will present the proof of the
existence of the invariant measure when interaction is stronger than pinning in Section 4.

2. The harmonic case

When the potentials U, V are harmonic, the system (1) of stochastic differential equations
is linear. We describe the network using the adjacency matrix Λ = (δi∼j)i,j and the degree
matrix D = diag(

∑
j∼i 1). The Laplace operator ∆ on the graph G is ∆ = D−Λ. We denote

Γ = I + ∆, ID = diag(1i∈D) and T∂V = diag(
√

2Ti1i∈∂V). Then, the stochastic differential
equation (1) can be written:

(2) dZt = MZt dt+ σ dBt,

with

M =
(

0 I
−Γ −ID

)
, σ =

(
0 0
0 T∂V

)
.

2.1. Existence and Uniqueness: First part of Theorem 1. Usually, the existence of the
invariant measure is obtained via a compactness property. We provide a new proof in the
harmonic case using the fixed point theorem on complete spaces. We could not generalize this
argument to a more general setting.

We say that a matrix M is stable if its eigenvalues have strictly negative real part. We
begin with two linear algebra lemmas proving that when the matrix σ is null, the noise-free
system is contracting if and only if the asymmetry condition dim EM,D = n is satisfied.

Lemma 2.1 (Projection). Let q ∈ RN and dim EM,D = n. If for every k ∈ N, IDΓkq = 0
then q = 0.

Proof. Let v ∈ EM,D. There exist λik such that v =
∑
i∈D,k λikΓkei. Thus,

〈q, v〉 = 〈q,
∑
i∈D,k

λikΓkei〉

=
∑
i∈D,k

λik〈Γkq, ei〉

= 0
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and q ∈ E⊥M,D. Finally, since E⊥M,D = {0}, we get q = 0. �

Lemma 2.2 (Stability). If dim EM,D = n then M is stable.

Proof. We have to prove that under the asymmetry condition, the eigenvalues of M have
strictly negative real part.
The eigenvector (q, p) 6= 0 associated to the eigenvalue λ satisfies{

p = λq
−Γq − IDp = λp.

Replacing p by λq and doing scalar product with q, we get

λ2‖q‖2 + λ‖IDq‖2 + 〈Γq, q〉 = 0.

Thus, the eigenvalues λ are either negative or conjugated (with strictly negative real part).
However, the real part of λ is null if and only if ‖IDq‖ = 0. Thus IDp = 0, and IDΓq = 0.
To obtain a contradiction, we multiply the first equation by Γ to obtain IDΓp = 0. Then, by
induction on k, IDΓkq = IDΓkp = 0.

Finally, using projection Lemma 2.1, q = 0 and p = 0. Since this is impossible, M is
stable. �

We now use a completeness result to prove the existence statement of Theorem 1. Let
(X, d) be a Polish space, P the set of probability measures on the Borel σ-field of X. For any
µ, ν ∈ P, we define

(3) W (µ, ν) = inf
G∈C(µ,ν)

∫ ∫
d(x, y)G(dx, dy),

where C(µ, ν) is the set of couplings of (µ, ν). The functional W defines the Wasserstein
distance on the set P1 of probability measures such that for one z0 ∈ X, W (δz0 , µ) < +∞.
Let us recall (see e.g. [Bol07]) that (P1,W ) is a complete space. In the following, we denote
d(µ, ν) = W (µ, ν).

Proof of the first part of Theorem 1. We first prove a contraction inequality for Dirac mea-
sures. Indeed, using a trivial coupling, there exists a non-negative constant α0 such that for
any starting points x and y:

‖P ?t δx − P ?t δy‖ = inf
G∈C(P?t δx,P?t δy)

∫ ∫
‖u− v‖ G(du, dv)

≤
∫ ∫

‖u− v‖Pt(x, du)⊗ Pt(y, dv)

= E‖Zxt − Z
y
t ‖

≤ ‖eMtx− eMty‖
≤ e−α0t‖x− y‖,

since stability Lemma 2.2 ensures that the matrix M is stable.
We finally use a classical argument (see [HM06b, Theorem 2.5]) to control the distance

between two distinct probability measures µ, ν

‖P ?t µ− P ?t ν‖ ≤ e−α0t‖µ− ν‖.

Thus, there exists α ∈ (0, 1) such that

‖P ?t µ− P ?t ν‖ ≤ α‖µ− ν‖.
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The functional µ 7→ P ?t µ is contracting on a complete space. Thus, there exists a unique
invariant measure µ such that

P ?t µ = µ,

and µ is the unique invariant measure of diffusion (1). �

Example 1. One can easily check that the network described in figure 2.2 satisfies the asym-
metry condition but does not satisfy the condition described in [MNV03, Section 2.3, 2.4]. The
damped particles are drawn in black.

V
U

5

2

3

4

1

Figure 2.2. An example of an asymmetric network with 5 particles

2.2. The non-uniqueness: Second Part of Theorem 1.

Lemma 2.3. If the graph is not asymmetric, i.e. dim EM,D 6= n, then there exists a quantity
K invariant by the Hamiltonian flow and independent of the behaviour of the particles on the
boundary set ∂V.

Proof. We look for a quantity K such that

K(q, p) = α〈z, q〉2 + 〈z, p〉2,
where 〈z, q〉 =

∑
i∈V ziqi denotes the usual scalar product, α is a real and z a vector. We

look for α, z such that K is independent of (pi, i ∈ D) to obtain LTK = 0 and such that
{H,K} = 0. Since Γ is symmetric, we easily obtain

{H,K} = 2〈z, p〉〈αz − Γz, q〉.
Since dim

(
E⊥M,D

)
≥ 1, Γ has an eigenvector z ∈ E⊥M,D with eigenvalue α ∈ R. Then K(q, p) is

independent of pi, i ∈ D. �

Proof of the second part of Theorem 1. For any smooth function f in DL? , we decompose the
formal adjoint of L,

L?ef

ef
= −{H, f}+

∑
i∈D
{1 + pi∂pif}+

∑
i∈∂V

Ti
(
∂2
pif + (∂pif)2

)
=: −{H, f}+ LT f.

Let µ be an invariant measure. Using Lemma 2.3, there exists a polynomial function K such
that for any γ > 0, µγ is invariant where

µγ(dz) = e−γK(z)/Zγ µ(dz)

and Zγ is the normalizing constant. �
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Example 2. When the network is the diamond described in figure 2.3 (the damped particles
are drawn in black), we obtain the counter-example given in [MNV03, Section 2.3]. Indeed, an
eigenvector is (0, 1, 0,−1) with eigenvalue 3. Thus, the quantity

K(q, p) = 3
(p2 − p4)2

2
+

(q2 − q4)2

2
is invariant by the Hamiltonian flow and independent of (q1, q3, p1, p3).

2
V

U

4

1

3

Figure 2.3. An example of a non-asymmetric heat conduction network

2.3. Support of the invariant measure: Proof of Theorem 2. To complete the study
of the invariant measure, we propose a characterization of its support. Since the pinning and
coupling potentials are harmonic, let us recall that the diffusion process starting from z ∈ Rn
can be written at time t > 0 by

Zzt = eMtz +
∫ t

0

eM(t−s)σ dBs.

Thus, the covariance Kt of the Gaussian process (Zzt )t is Kt =
∫ t

0
eM(t−s)σσ?eM

?(t−s) ds,
where M? denotes the adjoint of M . Thus, (Kt)t satisfies the differential equation

∂tKt = σσ? +MKt +KtM
?.

Proof of Theorem 2. Let us suppose that dim EM,D = n. Then, uniqueness Theorem 1 states
that the invariant measure is unique. Let us consider the n×n matrix Q solution of Lyapunov
equation

(4) MQ+QM? = −σσ?.

Then, if K0 = Q, for any t ≥ 0, Kt = Q and Q is the covariance of the invariant measure.
Then, the matrix Q can be written as

Q =
∫ ∞

0

eMtσσ?eM
?t dt.

Moreover, using Lemma 2.3 in [SZ70],

rank(Q) = dim EM,∂V .

That finishes the proof of Theorem 2. �

Let us notice that the uniqueness of this solution using Theorem 2.2 in [SZ70] gives an
alternative proof of uniqueness Theorem 1. Moreover, in [EZ04], Lyapunov equation (4) is
used to compute the direction of the heat current in simple networks.
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Remark. If dim EM,∂V 6= n then the semigroup is not strong Feller. Indeed, the linearity of
this equation implies that, for any z ∈ E⊥M,∂V , Zzt ∈ E⊥M,∂V . Thus, Pt(z, E⊥M,∂V) = 1E⊥M,∂V

(z) is
not continuous. This remark has to be linked with the full support property of the invariant
measure in Theorem 3.

2.4. Example. To end this section, we present a heat conduction network where all the
particles are damped and the unique invariant measure has a degenerate support.

In the case described by figure 2.4, the network is made of 6 particles. Tedious but straight-
forward computations give dim EM,D = 12 but dim EM,∂V = 10. The damped particles are
represented by striped circles, the boundary set by black ones.

����

����

��
��
��
����

��
��
��

2
1 3

4

65

Figure 2.4. An example of a heat conduction network with a unique invari-
ant measure with degenerate support

Remark. In view of [BLLO08], it could be interesting to wonder if there exists a heat conduction
network where the solution Q to the Lyapunov equation satisfies Qi+N, i+N = 0 for some i ∈ V.
In this case, under the invariant measure, particle i would be motionless. We couldn’t find
such a graph.

3. Uniqueness of the invariant measure

As we could see in the previous section, when the potentials are harmonic, the linearity al-
lows to do explicit computations and we can describe precisely the invariant measures. When
potentials are anharmonic, such a description is no more possible. However, we can generalize
uniqueness results in the following way. Theorem 3 relies on controllability and regularity
results established via Hörmander’s condition. Theorem 4 relies on Lasalle’s principle. The
regularity hypothesis are weaker and the temperature conditions are relaxed. As in the har-
monic setting, the uniqueness of the invariant measure is related to the damped particles
only.

3.1. Hörmander’s condition and uniqueness. In this subsection, we summarize what can
be done using control. We use the strategy developed in [Hai05a] to prove the uniqueness of
the invariant measure when all the damped particles are linked to a heat bath, i.e. D = ∂V.
We recall the following regularity property of semigroups and differential operators.

Let L? be the formal adjoint of the generator L. Let r be the cardinality of the boundary
set ∂V, a0 ∈ R and X0, X1, . . . , Xr be the vector fields such that

L? = a0 +X0 +
r∑
i=1

X2
i .

We define inductively the Lie algebra L(z) at point z ∈ Rn as the algebra generated by

{Xi}i=1,...,r , {[Xi, Xj ]}i,j=0,...,r , {[Xi, [Xj , Xk]]}i,j,k=0,...,r , · · ·
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We say that Hörmander’s condition is satisfied if for every z ∈ Rn the lie algebra L(z) has full
rank, i.e. dim L(z) = n.

If Hörmander’s condition is satisfied then the semigroup and the invariant measures have
smooth densities with respect to Lebesgue measure (see e.g. [RB06, Corollary 7.2]).

Remark. When the potentials are harmonic, Hörmander’s condition is equivalent to an asym-
metric disposition of the heat baths. More precisely, for any z ∈ Rn, dim EM,∂V = dim EM,D =
dim L(z) = n.

Lemma 3.1. When all the temperatures are equal to 1, the Gibbs measure µH is a full support
invariant measure, where

µH(dz) = 1
Z e
−H(z) dz

and Z is the normalizing constant.

Remark. To obtain L?µH = 0 in this lemma, it is essential that all the damped particles are
excited.

Theorem 3 is then a straightforward consequence of the following theorem.

Theorem 6 (see [Hai05b], Theorem 4.1). If Hörmander’s condition is satisfied and the Hamil-
tonian H has compact level sets then the diffusion can have at most one invariant probability
measure.

Remark. It is easy to see from M. Hairer’s proof and using Stroock-Varadhan’s Support The-
orem that the invariant measure has full support.

3.2. Lasalle’s principle: Uniqueness of the invariant measure. In this section we relate
the uniqueness of the invariant measure to the disposition of the damped particles. When the
potentials are harmonic this condition is optimal. Contrary to Section 3.1 we do not suppose
that all the damped particles are excited, ∂V ⊂ D.

This method is based on the contraction properties of the noise-free dynamics used in the
lectures of J. Mattingly [Mat07] to prove uniqueness of the invariant measure for Stochastic
Navier-Stokes equations. Our aim is to prove that the contraction point is in the support
of every invariant ergodic measure. Then, since ergodic measures have disjoint supports, we
prove that the invariant measure is unique. To control the deterministic diffusion, we introduce
Lasalle’s principle.

We would like to notice that in this section we just suppose that the semigroup is asymp-
totically strong Feller at the equilibrium point c0 (see Appendix A for more details).

3.2.1. Lasalle’s principle and Stroock-Varadhan’s theorem. In this section we recall Lasalle’s
principle. This principle is a generalization of Lyapunov’s method. When the derivative of the
Lyapunov function is not definite negative, this principle says that the solutions of a differential
system have an attractive point (see [Sas99, p. 198]). In the sequel, we write Ḣ(zt) = ∂tH(zt).

Definition 3.1 (Invariant set). A set A ⊂ Rn is called invariant if all the trajectories starting
from A stay in A, i.e. for any z0 ∈ A, for all t ≥ t0,

zz0t ∈ A.

Theorem 7 (Lasalle’s principle, see [Sas99], Proposition 5.22). Suppose there exists a function
H : Rn → R+ of class C1 satisfying the following conditions: for all a > 0,

(1) Ωa = {z; H(z) ≤ a} is bounded,
(2) Ḣ

∣∣
Ωa
≤ 0.
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We denote
S =

{
z ∈ Ωa; Ḣ(z) = 0

}
and we consider the biggest invariant subset A of S. Then, for any z0 ∈ Ωa,

zz0t −−−→
t→∞

A.

Remarks. ∗ When S is reduced to an equilibrium point and Ωa ↑ R, this principle implies
that for any starting point, the trajectory converges to the equilibrium point.

∗ As the function Ḣ is non-positive on Ωa, Ωa is invariant.
∗ In the Stochastic Navier-Stokes equations (see [Mat07]), one can compute the speed of

decrease to the equilibrium point of the deterministic system via a Gronwall inequality.
In the heat conduction networks we couldn’t establish such a result.

Finally, we recall Stroock-Varadhan’s support Theorem. We consider a stochastic system

dZt = F (Zt) dt+ σ(Zt) ◦ dBt,
where F, σ are smooth functions and ◦ denotes the Stratonovitch integral. For every z0 ∈
Rn, t0 > 0, let

St0,z0 =
{
zt0 ; ∃ψ ∈ C−, zt = z0 +

∫ t

0

F (zs) ds+
∫ t

0

σ(zs)ψ(s) ds
}
,

where C− stands for the set of piecewise continuous functions from [0,∞) to Rn.
We recall that the support Suppµ of a measure µ is the set of points z ∈ Rn such that for any
ball B(z0, ε) of radius ε > 0 centred in z0, µ (B(z0, ε)) > 0.

Theorem 8 (Support Theorem, see [SV72], Section 5). Using the previous notations,

SuppPt0(z0, ·) = St0,z0 .

3.2.2. Uniqueness of the invariant measure. Recall that the Hamiltonian H has a unique
minimizer c0. By adding a constant term, we can assume that H(c0) = 0. Diffusion (1) is said
to satisfy stability condition if the deterministic system

(5)

 q̇i = pi
ṗi = −∂qiH

pi1i∈D ≡ 0

has a unique solution given by zt ≡ c0.

In our way to prove Theorem 4, we are going to show the following theorem.

Theorem 9. If the stability condition (5) is satisfied then for every invariant measure µ

c0 ∈ Suppµ.

Since H is continuous at c0, we first notice that for all ε > 0 there exists η > 0 such that

Kη := {z; H(z) < η} ⊂ B(c0, ε).

Theorem 9 is proved using the following way: from Lasalle’s principle, every solution of the
deterministic system associated to (5) goes to c0. Hence, it hits Kη. As soon as the dynamical
system enters Kη, it stays there, since Kη is invariant. If one considers all the solutions
starting from the ball of radius R, we show that after a finite time T all these solutions are in
Kη. Finally, using Stroock-Varadhan’s Support Theorem 8 we prove that for all z in the ball
B(0, R), c0 is in the support of PT (z, ·). Now, we give a formal proof of these facts.
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Kη = {H < η}

z0

c

Figure 3.5. Dynamic of the noise-free Hamiltonian system

For any z ∈ Rn, let Tz be the hitting time of Kη starting from z, i.e.

Tz = inf {t ≥ 0; zzt ∈ Kη} .
We denote

T = sup
z∈BR

Tz.

Since the hitting times of an open set are upper semicontinuous, we get

T < +∞.

Proposition 3.2. With T and Kη defined as before, for all z ∈ B(0, R),

PT (z,Kη) > 0.

Proof. Straightforward using the support Theorem 8 and the trivial control ψ ≡ 0. �

Proof of Theorem 9. First notice that we can use Lasalle’s principle since

∂tH(zt) =
∑
i∈V

∂qiHq̇i +
∑
i∈V

∂piHṗi

=
∑
i∈V

∂qiHpi +
∑
i∈V

pi (−∂qiH − 1i∈Dpi)

= −
∑
i∈D

p2
i .

Thus, the stability condition (5) involves the convergence of the noise-free solutions to the
equilibrium point. Let µ be an ergodic invariant measure, ε > 0. Since µ is non null, there
exists a ball BR such that µ(BR) > 0. Since H is continuous, there exists η such that Kη ⊂
B(c0, ε). Using the previous Proposition 3.2, there exists T such that for all z ∈ BR,

PT (z,Kη) > 0.

Then, for any invariant measure µ,

µ (B(c0, ε)) ≥ µ (Kη)
= P ∗Tµ (Kη)

=
∫

Rn
PT (z,Kη) µ(dz)

≥
∫
BR

PT (z,Kη) µ(dz)

> 0.

Finally, we have shown that c0 ∈ Suppµ. �

We can now prove uniqueness Theorem 4.
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Proof of Theorem 4. Let us recall (see e.g. [DP06]) that the set of invariant measures is the
convex hull of the set of invariant ergodic measures. Moreover, if (Pt) is asymptotically strong
Feller at c0, then c0 belongs to at most one invariant ergodic measure [HM06a, Theorem 3.16]).
But, if there are two invariant ergodic measures, the previous Theorem 9 ensures that c0 is in
both supports. That’s impossible!
Finally, there is a unique ergodic invariant measure and, since the convex hull of a point is
reduced to that point, diffusion (1) has at most one invariant measure. �

3.2.3. The harmonic case. To improve our understanding of the stability condition defined
below, we go back to the harmonic case where the pinning and the interaction potentials are
quadratic.

Theorem 10. When the potentials are quadratic, the stability condition is equivalent to the
asymmetry condition.

Proof. In this section, we want to prove that if dim EM,D = n, zt ≡ 0 is the unique solution
of the system 

q̇i = pi
ṗi = −qi −

∑
j∼i(qi − qj)

pi1i∈D = 0.
Let us rewrite the equation associated to particle i ∈ D, 〈z, ei+N 〉 ≡ 0. But, if we derive this
equation with respect to the time parameter, as pi = 0 on D,∑

j∼i
qj = constant.

Thus, we can write this equation (recall that Λ is symmetric) 〈z,Λei+N 〉 ≡ 0. By induction,
we obtain for any k ∈ N, i ∈ D, t ∈ R+,

〈z,Λkei+N 〉 = 0.

Since dim EM,D = n,
Span

{
Λkei+N , i ∈ D, k ∈ N

}
= RN ,

thus,
〈z, ei+N 〉 ≡ 0, ∀i ∈ V.

Finally we obtain qi = constant, ∀i ∈ {1, . . . , N}. Since 0 is the unique solution of equation
H(z) = 0, we obtain

z ≡ 0.
�

3.3. Example. The example presented in figure 2.4 is a heat conduction network that satisfies
the stability condition (5) but not Hörmander’s condition. We suppose that the interaction
potential U satisfies U(q) = q4 and that the pinning potential is quadratic, V (q) = q2. Let
us notice that all the particles are damped. Thus, stability condition is easily satisfied. We
will see in Section 4 that this system has an invariant measure. However, we are going to see
below that Hörmander’s condition is not satisfied.
First of all, [X0, ∂p1 ] = −∂q1 + ∂p1 , thus ∂q1 ∈ L.
We compute the Lie bracket between X0 and ∂q1 ,

[X0, ∂q1 ] =
∑
i∈V

∂2
qiq1H∂pi

= V ′′(q1)∂p1 + U ′′(q1 − q3)∂p1 + U ′′(q1 − q4)∂p1 − · · ·
· · · − U ′′(q3 − q1)∂p3 − U ′′(q4 − q1)∂p4 .
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So,
U ′′(q1 − q3)∂p3 + U ′′(q1 − q4)∂p4 ∈ L(z).

Computing the Lie bracket between the preceding quantity and ∂q1 , we obtain

U ′′′(q1 − q3)∂p3 + U ′′′(q1 − q4)∂p4 ∈ L(z).

With a similar computation we get, U (4)(q1 − q3)∂p3 + U (4)(q1 − q4)∂p4 ∈ L(z), thus

∂p3 + ∂p4 ∈ L(z).

We finally distinguish the following cases.
∗ If q1 6= q3 and q1 6= q4, Vandermonde’s determinant does not vanish, hence

dim L(z) = 12.

∗ If q1 = q3 and q1 6= q4 then ∂p4 ∈ L(z), and the last Lie bracket gives ∂p3 ∈ L(z), so

dim L(z) = 12.

The same computations could be done if we consider the particles 2, 5 or 6.
∗ If q1 = q3 = q4 = q5 = q6 = q, we only get ∂p3 + ∂p4 ∈ L(z). Then, the Lie bracket

with X0 gives
∂q3 + ∂q4 ∈ L(z),

so
V ′′(q)∂p3 + V ′′(q)∂p4 ∈ L.

Thus,
dim L(z) = 10.

Finally, Hörmander’s condition is not satisfied on the manifold defined by {z ∈ Rn; q1 = · · · =
q6}.

4. Existence of the invariant measure

Recall that u (resp. v) denotes the degree of the polynomial U (resp. V ). Henceforth we
assume that u ≥ v, i.e. the interaction is stronger than the pinning. This section is devoted
to the proof of the existence statement of Theorem 5. The proof of this theorem is based
on the arguments developed in [RBT02]. We give the outlines of the proof to emphasize the
importance of the rigidity condition.

To prove the theorem we use the classical Krylov-Bogoliubov method.

Lemma 4.1. Let us suppose that there exists a Lyapunov function W such that
(1) LW (z) ≤ CW (z) for a positive constant C,
(2) there exists a time t0 > 0 and a sequence an ↑ +∞ such that

lim
n→∞

sup
{z;W (z)>an}

Pt0W (z)
W (z)

= 0.

Then the semigroup (Pt) has an invariant measure.

Proof. We divide the proof in two main steps.
First, let K be the compact set {W (z) ≤ an}, with n large enough. Using the hypothesis,

there exist a ∈ (0, 1), b such that

Pt0W (z) ≤ aW (z) + b1K(z).
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Thus, using the semigroup property, for any n ∈ N,

Pnt0W (z) ≤ anW (z) + b+ ab+ · · ·+ an−2b+ an−1b1K(z)

≤ anW (z) +
b

1− a
.

Since LW (z) ≤ CW (z), we get PtW (z) ≤ eCtW (z) and choosing n with nt0 ≤ t < (n+ 1)t0,
we get

PtW (z) = Pnt0Pt−nt0W (z)

≤ eC(t−nt0)Pnt0W (z)

≤ eC(t−nt0)

(
anW (z) +

b

1− a

)
≤ eCt0

(
W (z) +

b

1− a

)
.

Thus, supt PtW (z) < +∞.
Second, let z ∈ Rn. We consider the family of measures defined for any bounded continuous

function f by

νt(f) = 1
t

∫ t

0

Psf(z) ds.

Using the first step, supt νt(W ) ≤ supt PtW (z) < +∞. Thus, (νt) is tight and Krylov-
Bogoliubov argument gives the existence of the invariant measure. �

To prove that the conditions of the previous lemma are satisfied in the heat conduction
network setting, we use the Lyapunov function W (z) = eβH(z).

Lemma 4.2. Let β ∈ R such that 0 < β < max(Ti, i ∈ ∂V)−1. There exists a constant C > 0
and b > 1 such that

PtW (z)
W (z)

≤ eCβt
P
i TiEz

[
e−C

R t
0

P
i∈D p

2
i ds
]1/b

.

We recall briefly the proof of this lemma.

Proof. Let β ∈
(

0,max (Ti, i ∈ ∂V)−1
)

. Using Itô’s formula,

H(Zzt ) = H(z) +
∑
i∈∂V

Tit−
∫ t

0

∑
i∈D

p2
i ds+Mt.

But (Mt) is a martingale with quadratic variation [M,M]t = 2
∫ t

0

∑
i∈∂V Tip

2
i ds. Thus,

PtW (z)
eβH(z)

= Ez

[
eβ(H(Zt)−H(z))

]
= Ez

[
eβMt−a β

2

2 [M,M]tea
β2

2 [M,M]t+β
P
i∈∂V Tit−β

R t
0

P
i∈D p

2
i ds

]

The inequality is obtained using Hölder inequality and exponential martingales. �

To show the semigroup property in Krylov-Bogoliubov Lemma 4.1, we use a scaling argu-
ment to reduce our problem to a noise-free dynamics.
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Let (En) be an energy sequence growing to +∞. We use the scaled Hamiltonian

Hn(q, p) =
∑
i∈V

p2
i

2
+ 1

En
V
(
E1/u
n qi

)
+ 1

2En

∑
j∼i

U
(
E1/u
n (qj − qi)

)
.

Let us consider the following stochastic differential equation

(Sn)
{

dqi = ∂piHn dt

dpi = −∂qiHn dt− 1i∈DE1/u−1/2
n pi dt+ 1i∈∂VE

1/2u−3/4
n dBi.

The solutions of this system converge to the solutions of the Hamiltonian system described
by the limit Hamiltonian (see [Car07, Section 5])

H∞(q, p) =
∑
i∈∂V

p2
i

2
+ 1u=v|qi|v + 1

2

∑
j∼i

(qj − qi)u.

Thus, we consider the noise-free system, for any i ∈ V,

(S∞)
{

q̇i = ∂piH∞
ṗi = −∂qiH∞ − 1i∈D pi.

To conclude, we need the following rigidity condition. The differential system (1) is said to
be rigid if

(6)

 q̇i = ∂piH∞
ṗi = −∂qiH∞

pi1i∈D = 0.

has a unique solution given by zt ≡ c0.

Lemma 4.3. If the system satisfies the rigidity condition, then for any z0 ∈ Rn such that
H∞(z0) = 1, for any solution of (S∞) starting from z0, for any t > 0,∫ t

0

∑
i∈D

p2
i ds > 0.

Proof. Let us suppose that there exists t > 0 such that∫ t

0

∑
i∈D

p2
i ds = 0.

Let us recall that we supposed that H is strictly convex and reaches its minimum at c0 ∈ Rn.
Since the rigidity condition (6) is satisfied, zt = c0 and we get H∞(z0) = H∞(c0) = 0. We
have thus obtained a contradiction. �

The existence Theorem 5 is a consequence of the following lemma. The proof can be found
in [Car07, Lemma 5.2].

Lemma 4.4. Let Zn be a solution of the scaled system (Sn) starting from zn with H(zn)→∞.
Then, there exists a subsequence (znk)k such that for any C > 0, t > 0,

lim
k→∞

Eznk

[
e−C

R t
0

P
i∈D p

2
i ds
]

= 0.

Remark. Contrary to the results obtained for a chain, we cannot prove using this method that
the convergence speed to the invariant measure is exponential. Indeed, this rate was obtained
via compactness properties that we could not generalize. However, the results of [HM07] are
still valid : when the interaction potential is quadratic and the pinning potential is at least
of degree 4, 0 is in the essential spectrum of the extension of the generator L to the space
L2(e−βH dp dq), with β < min(1/Ti, i ∈ ∂V).
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Appendix A. The Asymptotic Strong Feller property

In this section we prove that the Asymptotic Strong Feller property is satisfied, if the
potentials are harmonic, when the position of the damped particles is asymmetric, i.e.
dim EM,D = n. When the potentials are convex polynomials, we expect that the diffusion (1)
is Asymptotically Strong Feller at the equilibrium point c0.

The Asymptotic Strong Feller property was introduced by M. Hairer and J. Mattingly
in [HM06a] to study the stochastic Navier-Stokes equation. We recall briefly the main defini-
tions.

Definition A.1 (Totally separating system). An increasing sequence (dn) of pseudo-metrics
is a totally separating system if for all x 6= y ∈ Rn,

dn(x, y)→ 1.

Definition A.2 (Asymptotic Strong Feller). A semigroup (Pt) is called asymptotically strong
Feller at z ∈ Rn if there exists a totally separating system of pseudo-metrics (dn) and a
sequence tn > 0 such that

lim
γ→0

lim sup
n→∞

sup
y∈B(z,γ)

‖Ptn(z, ·)− Ptn(y, ·)‖dn = 0.

Proposition A.1 (Gradient property, see [HM06a], Proposition 3.12). Let z ∈ Rn. Assume
there exists a non-decreasing function C : R+ → R and two positive sequences tn ↑ ∞, δn ↓ 0
such that for all differentiable function φ with ‖φ‖∞ = supz |φ(z)| and ‖∇φ(z)‖∞ finite, for
any y in a neighbourhood of z,

|∇Ptnφ(y)| ≤ C(‖y‖) (‖φ‖∞ + δn‖∇φ‖∞) .

Then the semigroup is asymptotically strong Feller at z.
A corresponding totally separating system of pseudo-metrics is then

dn(x, y) = 1 ∧ |x− y|
δn

.

Proposition A.2. When the potentials are harmonic and the graph is asymmetric, i.e.
dim EM,D = n, the diffusion semigroup is asymptotically strong Feller at any point in Rn.

Proof. We are going to use the stability of the matrix M to prove that this property is true.
First notice that for any unitary vector ξ ∈ Rn,

D (Ptφ) (z)ξ = E [Dφ(Zzt )ξ]
= E [(Dφ)(Zzt ) ◦ (DZxt )ξ]
=: E [(Dφ)(Zzt )ρt] .

If diffusion (Zt) satisfies the stochastic differential equation dZt = f(Zt) dt + σ dBt, ρt =
Dφ(Zzt )ξ satisfies the differential equation (see [Bas98, p.30]),{

dρt = (Df) (Zxt )ρt dt,
ρ0 = ξ.

Thus, for any function φ with bounded derivatives, we have the upper bound

‖∇Ptφ(z)‖ ≤ ‖∇φ‖∞E [‖ρt‖] ,

and it remains to show that E [‖ρt‖]→ 0 when t→∞.



HEAT CONDUCTION NETWORKS: DISPOSITION OF HEAT BATHS AND INVARIANT MEASURE 17

In the heat conduction network setting, we denote the Hessian of the potential energy

Hess(z) =
(
∂2
qiqjH(z)

)
1≤i,j≤N

.

Then, we have {
∂tρt = M(t, z)ρt,
ρ0 = ξ,

with M(t, z) =
(

0 I
−Hess(Zzt ) −ID

)
.

When the potentials are quadratic, M(t, z) = M is constant and since matrix M is stable
as soon as the network is asymmetric, we have ρt → 0 for any ξ if and only if dim EM,D = n.
Thus, if the network is asymmetric, the diffusion is asymptotically strong Feller. �

When the potentials are no more harmonic, we have to study the behaviour of a non-
autonomous linear differential equation.
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